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Animals canpredict the time of occurrence of a forthcomingevent
relative to a preceding stimulus, i.e. the interval time between
those two, given previous learning experience with the temporal
contingency between them. Accumulating evidence suggests
that a particular pattern of neural activity observed during tasks
involving ¢xed temporal intervals might carry interval time infor-
mation: the activity of some cortical and subcortical neurons
ramps up slowly and linearly during the interval, like a temporal

integrator, and peaks around the time at which the event is due to
occur.The slope of this climbing activity, and hence the peak time,
adjusts to the length of a temporal interval during repetitive ex-
periencewith it.Various neuralmechanisms for producing climbing
activity with variable slopes, representing the length of learned in-
tervals, are discussed. NeuroReport15:745^749�c 2004 Lippincott
Williams &Wilkins.
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INTRODUCTION
One of the most important tasks of the brain is the
prediction of forthcoming events to allow for behavioral
preparation, anticipatory responses, and planning. Such
prediction requires animals to extract and utilize the
temporal structure of their worlds, that is, the temporal
relations between various environmental events or between
the own behavior and its effects. In many cases, extracting
just the serial order of events is not sufficient since actions
somehow have to be time-locked to the anticipated events to
be useful: the right timing matters. Hence, it is not
surprising that at least mammals and birds can also predict
the precise timing of events relative to some preceding
stimulus, given previous experience with the temporal
contingency between those two. This has been shown in a
variety of classical and operant conditioning procedures
involving fixed temporal intervals, working memory,
temporal discrimination, and other timing tasks [1–4]. The
present review focuses on some very recent ideas and
exciting developments regarding the explicit neural repre-
sentation of interval times, especially on scales of seconds to
minutes, in behavioral contexts such as operant condition-
ing or prediction (some of the older literature on the
neurobiology of timing, and on (subsecond) temporal
information processing within specific sensory or motor
modalities, is reviewed in [5–7]).

NEURALCORRELATESOF INTERVALTIMING:
CLIMBINGACTIVITY
A key observation with regards to the neural representation
of interval time might come from studies of working
memory [8–11]. In a working memory task, a cue is briefly
presented followed by a delay of hundreds of milliseconds
up to many seconds. After the delay period, the animal is
confronted with a choice situation where the correct

response depends on the nature of the cue presented
previously. Therefore, some information about the cue or
the forthcoming choice has to be actively maintained in
(working) memory during the delay. In most experiments,
the duration of the delay period is fixed (or may vary with a
Gaussian distribution around some mean), and hence the
relative time of occurrence of the choice situation is
predictable (the specific motor response required at choice,
however, often is not). In many cortical areas, most
prominently the prefrontal cortex, persistently elevated
firing rates have been observed within subpopulations of
neurons during the delay period [9–12]. This persistent
activity often takes a particular, monotonic form: It either
slowly decays or slowly climbs during the delay period up
to the point where the response is required (Fig. 1) [11,13–
20]. Such slowly climbing or decaying activity has also been
observed in tasks where animals are required to withhold
responses for fixed temporal intervals (differential reinfor-
cement at low rates) [21,22]. While slowly falling activity is
most often correlated with the nature of the preceding cue,
climbing activity in many cases is selective for a particular
object or event animals expect to occur after the delay: in
this sense it is anticipatory [16,18]. A slowly and mono-
tonically changing anticipatory signal above frontal areas,
termed contingent negative variation (CNV), was noted
earlier in human EEG studies [23].
Climbing activity can span widely different time intervals

from hundreds of milliseconds [18] up to tens of seconds
[16]. Moreover, it is often quite linear as one would expect
for a perfect temporal integrator (Fig. 1) [13,24], but which is
a nontrivial property given the highly nonlinear dynamics
of the nervous system. This raises the intriguing possibility
that climbing activity does not only encode information
about the expected event, but also about its time of
occurrence relative to the preceding cue. Niki and Watanabe
[21] were among the first to link prefrontal neural activity to
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timing processes. If climbing activity in fact carries interval
time information, one would expect it to adapt to
experienced temporal intervals, to allow optimal discrimi-
nation within the relevant interval, and since neural activity
cannot grow to infinity. This was shown by Komura et al.
[24], who found linearly climbing activity in thalamic
neurons in a trace conditioning protocol where a predictive
stimulus precedes a reward by a fixed interval. Climbing
activity is triggered by the predictive (conditioned) stimulus
and peaks around the time at which the reward is due. As
the delay between offset of the predictor and the delivery of
reward is either increased or decreased, the slope of
climbing activity adjusts within a few trials to the new
temporal interval (Fig. 1). That is, while the maximum firing
rate around the expected time of occurrence and the onset
time of climbing activity remain the same, the rate at which
activity changes increases or decreases as the delay period is
reduced or prolonged. Such adaptation of climbing activity
to the length of the temporal interval has recently also been
observed in prefrontal and infero-temporal cortex during
working memory tasks [13,25,26].
As noted above, climbing activity might be prospective in

the sense that it is correlated with the upcoming target, and
might represent the duration of a learned temporal interval
via its slope. Slowly decaying activity, on the other hand,
which is correlated with the preceding cue [16,18], might
allow an animal to judge retrospectively the time that has
elapsed since presentation of the cue even if the experienced
intervals are novel [27,28]. In accordance with this inter-
pretation, cue-related persistent activity is present early on
during training, or even during inter-trial intervals where
not needed for task performance [29] and in untrained
animals [30], while anticipatory activity related to the
forthcoming choice emerges only later during acquisition
of a stimulus association task [31].
Recently Leon and Shadlen [32] provided more direct

evidence that climbing activity might be related to interval
time measurement. They trained monkeys in an interval
time discrimination task while recording from neurons in
posterior parietal cortex. The animals had to judge whether
a test stimulus was turned on for a longer or a shorter
interval than a previously presented standard stimulus of
either 314ms or 800ms duration. Leon and Shadlen [32]
found both slowly rising and slowly decaying activity,
correlated with the passage of time, whose slopes were
steeper for the shorter duration standard. Moreover, during
trials where the monkeys made an error, the slope of
climbing activity seemed to be misadjusted, being either too
steep or too flat. Finally, pooling responses from many
neurons, neural activity at each point in time during the test
interval predicted well the probability of a longer or a
shorter response for that test cue duration as determined
from psychometric response functions. That is, there was a
close agreement between the behavioral and the neural data
(see Fig. 6 in [32]).

READ-OUTOF TEMPORAL INTEGRATOR-LIKE
ACTIVITY
How could climbing activity be read out to trigger
responses at the right moment in time? Experimental
findings suggest two basic possibilities: first, climbing
activity when exceeding some rather constant firing rate
threshold (say, 60Hz) might cause an abrupt increase or

decrease in the firing rate of some postsynaptic response
neurons around the expected time of occurrence (see [33] for
the possible neural mechanisms). Neurons that exhibit such
a fast increase or decrease aligned to the expected time of
occurrence in working memory, operant, or trace condition-
ing tasks, have been observed in various cortical [34,35] and
subcortical [36,37] areas. These responses seem to signal the
expected time of occurrence since they also occur in the
absence of the actual target stimulus. Second, transiently
synchronized action potential times of different simulta-
neously recorded neurons have been observed to slightly
precede the expected time of occurrence [38,39], thus
providing a possible read-out signal (see [40,41] and [42],
respectively, for how such anticipatory transient synchrony
might arise from the slowly falling (or climbing) activity of
presynaptic integrator-neurons, and during the course of
learning based on spiking-time-dependent synaptic plasti-
city [43]).

BIOPHYSICALBASISOF TEMPORAL
INTEGRATOR-LIKEACTIVITY
What are the biophysical mechanisms underlying the
generation of slowly climbing, temporal integrator-like
activity? There are at least three different possible imple-
mentations that have been proposed. First, climbing activity
might be due to slowly activating or inactivating membrane
currents with time constants in the range of seconds (or
even minutes). Cortical pyramidal cells are equipped with a
variety of such currents [44–46]. Adjustment to different
temporal intervals might be possible if the rate of (in-)
activation of the current depends on membrane voltage or
firing activity [26]. Alternatively, there could be many such
currents with a range of very different time constants [47],
but no biophysically plausible mechanisms of how this
could produce climbing activity with adjustable slope have
been suggested so far. While slow currents may provide a
simple and robust timing mechanism [26], there are also
several problems associated with their use for interval
timing. One of the problems is that the range of temporal
intervals that could be represented this way might be quite
limited, bounded by the fastest and the slowest time
constant that can be achieved through the activity-depen-
dence of the current. Another potential problem is that a
mechanism relying on slow intrinsic time constants might
be difficult to control. For instance, it might take quite long
to fully inactivate a slowly activating channel again, i.e., to
reset the neuron to its initial state for processing the next
interval (but see [26]).

A second way to account for interval timing and climbing
activity is through stochastic ‘decay’ processes within
networks of bistable units: Assume single neurons or
subpopulations of neurons can switch between two differ-
ent stable firing rates, separated by a kind of threshold at
which switching from one rate to the other occurs (Fig. 2a
left) [8]. If there is noise in the system, it will drive neurons
occasionally across the threshold, causing a sudden change
in firing rate. The time it takes the noise, on average, to
cause a switch from lower to higher activity (or vice versa)
will depend on the location of the threshold, which is
affected by factors such as the strength of synaptic inputs,
and the amplitude of the noise (Fig. 2a left) [42,48].
Averaging over many trials or over a population of such
neurons (as usually done with experimental data), due to
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the stochastic nature of the switching one can get mono-
tonically rising (or falling) activity histograms with a time
course depending on the average switching time [42,48].
These histograms, however, may not be linear as often
observed experimentally (Fig. 1, Fig. 2a right) [13,24]. More
importantly, smoothly climbing activity seems to be a
phenomenon that occurs for single neurons within single
trials in vivo (see Fig. 2b in [19]; analysis in [32]). It is,
therefore, not just due to averaging across many trials or
neurons [32]; only a minority of neurons seems to exhibit
truly bistable activity [13,49]. This does not entirely rule out
this account of interval timing, since there remains the
possibility that some downstream neurons read out the
activity of a population of converging bistable neurons,
thereby exhibiting a slowly ramping up (or down) behavior
within their own activity. Of course, this still would imply a
larger population of bistable neurons somewhere in the
brain, switching up and down at different times during the
interval.
Finally, neurons might produce much slower effective

time constants from a much faster intrinsic dynamics
[33,50]. This third possibility relies on the idea of a neural

Fig.1. Firing rate of a thalamic neuron as a function of time showsclimb-
ing activity. After presentation of a predictive cue, the ¢ring rate of some
neurons steadily climbs and reaches a peak coincident with the time at
which a subsequent event, in this case a reward, is due to appear.The in-
terval between cue and rewardwas initially1s, but was then increased to
2 s (trials 2^13). So climbing activity initially peaks one second after o¡set
of the cue, but then quickly adjusts to the new time of occurrence by
changing its slope. Reprinted from [24] with kind permission (Copyright
2001by Nature Publishing Group).

Fig. 2. Possible biophysical basis of climbing activity. (a) Climbing activitymay be due to stochastic activity in bistable neurons [42,48].On the left, two
activity traces (solid lines; illustrated simply as a randomprocess here) of a neuron are shown that canbe in anyone of two stable ¢ringmodes, separated
by a threshold (dotted lines). Noise will eventually drive the neuron across the threshold and hence cause a switch from the lower to the higher stable
¢ring rate. For a higher threshold (red) this will take longer, on average, than for a lower threshold (green). Right hand side: Averaging over many such
neurons, one obtains a ¢ring rate histogramwith a time course depending on the location of the threshold.The time coursemay appear more linear, at
least for relatively brief intervals, if the transition from the low to the high ¢ring rate is slower (more gradual) than as shown on the left [48]. Itmay also
depend on the interactions between neurons (neglected here). (b) Climbing activity may be due to ¢ne adjustment of a cellular feedback loop.The top
graph shows on the left a con¢guration that produces very slowly climbing activity, corresponding to a long interval, as depicted on the right (model
simulations, see [33]; Stim¼ time of presentation of the predictive stimulus).The average amount of a Ca2þ-activated after-depolarizing (ADP) conduc-
tance (red curve) that is generated in a neuron at di¡erent ¢ring rates is just slightly larger (see magni¢ed area in inset) than the amount of this conduc-
tance thatwould actuallybe required (green curve) tomaintain the neuron at anyof these rates.That is, over the rangeB10^75Hz there is a small excess
of current driving the neuron to higher ¢ring rates. In the bottom graph, the discrepancy between the amount of ADP conductance generated and the
one required is larger, corresponding to faster climbing activity, hence a shorter temporal interval, as on the right (bottom). By reversing the vertical
order of the two curves, i.e., shifting the green above the red curve, slowly decaying activity would be produced. Modi¢ed from [33], with permission
(Copyright 2003 by the Society for Neuroscience).
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integrator [51], and Fig. 2b shows how it works. Climbing
activity might arise on the single neuron level through a
positive feedback loop between neural firing, firing rate
dependent Ca2þ influx into the cell, and Ca2þ-activated
depolarizing currents (see [50] for a population level
account utilizing a similar principle). The red curves in
Fig. 2b give the amount of Ca2þ-activated depolarizing
current [45,52] that flows if a neuron fires at a given rate
(more precisely, they give the average conductance under-
lying the current). The green curves, in contrast, give the
amount of this conductance that would be required to
maintain the neuron at a particular firing rate. Hence,
wherever these two curves overlap or intersect, the neuron
receives exactly what it needs to maintain its current firing
rate. If the red curve is only slightly above the green curve,
as in Fig. 2b (top, see inset), the neuron gets slightly more
depolarizing current than it would need to maintain its
current firing rate, and hence firing rate increases over time.
Since the mismatch between current needed and current
provided is only very small, however, the firing rate will
increase only very slowly, in fact orders of magnitude
slower than commanded by the intrinsic time constants of
the neuron [33]. By changing the distance between the two
curves (bottom graph in Fig. 2b), which could be achieved
through long-term plasticity mechanisms that change the
strength of synaptic input to the neuron [33,53], the time
course of climbing activity can theoretically be adjusted
within an arbitrary range, largely independent of the
intrinsic time constants of the neuron. There indeed exists
some experimental evidence that Ca2þ-activated currents
within cortical pyramidal cells could support such a
mechanism [54].
While the neural integrator-arrangement could span, in

principle, intervals of arbitrary length, and can be controlled
in a fast and flexible manner, additional mechanisms are
required for achieving and maintaining the sensitive balance
of parameters that allow a neuron to work as a timer [33,55].
Such biophysical mechanisms of how neurons could self-
organize into a neural integrator-configuration [33], as well
as various other ideas on how robust neural integration
could be achieved on the single neuron or network level
without much fine-tuning [55–57], have been proposed.

CONCLUSIONSANDOPENISSUES
The brain might rely on a number of different mechanisms
for processing temporal information within various mod-
alities, on various time scales, and for various coding or
information processing purposes [5–7]. The present review
focused on climbing activity since it currently seems to be
the most promising candidate for the explicit neural
encoding of interval times in the context of prediction.
Climbing activity enables a direct and continuous read-out
of the time ahead of an anticipated event, or, alternatively,
the time that has elapsed since presentation of the predictive
stimulus (see also [27]).
I would like to conclude by mentioning a few of the many

open issues that still remain. Besides the still largely
unknown cellular and synaptic basis of climbing activity,
further in vivo experiments are certainly needed that directly
link climbing activity to interval timing. For instance, does
climbing activity break down in delay tasks where the
delays are drawn from a uniform random distribution
lacking any temporal predictability? Another interesting

question is how climbing activity observed during motor
and perception tasks [15,58,59], often interpreted as motor
preparation or accumulation of evidence, relates to climbing
activity observed in tasks involving fixed temporal delays.
Finally, the slope of climbing activity might be affected not
only by the length of the temporal interval, but also by other
variables like the value of an anticipated reward or the
frequency of a to-be-remembered vibrotactile (flutter)
stimulus [13,19,24]. This raises the question of how exactly
the nervous system disentangles these various factors
(or whether it actually has to).
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