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bstract

The motion aftereffect (MAE) describes an illusory motion in the opposite direction after the sudden halt of a prolonged moving visual stimulus.
ehaviorally, this illusion was mostly analyzed in humans and other mammals. Up to now, birds were never tested. Since a new neural mechanism

or the MAE was recently discovered in the pigeons’ midbrain, the aim of this study was to investigate if pigeons can perceive this illusion. In two
uccessive experiments, we trained animals to discriminate black and white grating patterns with two moving directions: upward or downward,

r standing still. During transfer tests, animals were shortly confronted with the static pattern after prolonged exposure to a moving stimulus.
he choice behaviors of these animals were highly indicative for the perception of an MAE. The possible neuronal substrate for the movement
ftereffect is discussed.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Visual illusions have always attracted the scientific interest
ince they beautifully expose the “hard-wired” interpretation
f the visual scenery with which our perceptional system is
ndowed. Most illusion studies were conducted on human sub-
ects [14,49] and mammals [5,6,8,11–13,18,25,40,45,54] not
irds. And all of these experiments done on birds utilized static
atterns such as the Müller–Lyer, Ponzo or subjective con-
our illusions (pigeons [19,20,22,30,31]; barn owls [34]; chick
47,53]). In addition, chicks were shown to achieve relative
epth disambiguation [15] and amodal completion [39]. Other
tudies analyzed the lateralized neuronal mechanisms of geo-
etric illusions and amodal completion (pigeon [22]; chick

38]).
Movement illusions represent a special class of illusory stim-
li. Chicks have been shown to see some movement illusions
ike stereokinetic illusions [10] or one type of biological motion
ften called as the “Johansson effect” [48]. Probably the most

∗ Corresponding author.
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rominent movement illusion is the motion aftereffect (MAE)
r waterfall illusion which describes the illusory motion in the
pposite direction after the sudden halt of a prolonged visual
ovement stimulus [1,36]. Behavioral studies have shown that

onhuman animals (rhesus monkey [40]; sheep blowfly [43];
at [7]) have the ability of perceiving the MAE. As the largest
roup of flying vertebrates, birds constitute an interesting model
o study this movement illusion. However, it is still unknown if
hey can perceive the MAE.

To answer this question, pigeons (Columbia livia) are an
xcellent model. Three studies had addressed the Müller–Lyer
llusion using pigeons and revealed a similar pattern of percep-
ion as humans as long as inward arrows were used [20,30,31].
urther evidence [19] showed that the performance of pigeons

n discriminating the length of bars located between converging
ontexts (Ponzo illusion) was affected by the context direction.
he variation of context was able to increase the perceived differ-
nce in bar length or decrease it. Later, Güntürkün [22] indicated
hat pigeons could perceive the Herringbone illusion and sug-
ested that the reduced perceptual illusion after unihemispheric
esions in brain-damaged patients [37] might be related to the

symmetry of neural circuits involved in the analysis of the illu-
ory stimuli in the human brain. These experiments make it clear
hat pigeons can perceive geometric visual illusions with static
atterns similar to humans.

mailto:qian.xiao@queensu.ca
mailto:Onur.Guentuerkuen@ruhr-uni-bochum.de
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Table 1
The combination of visual stimulus displayed on the central key at different
phases of the two experiments. During the adapation phase, the animals were
asked to successively peck the central key within at least 30 s to active three side
keys. Subsequently, they had 3 s to peck one of the side keys to be rewarded by
food delivery or be punished

Experiment Period Adaptation phase Response phase

Experiment one Training Static (30 s) Static (3 s)
Upward (30 s) Upward (3 s)
Downward (30 s) Downward (3 s)

Transfer test Static
(30 s) + static (1 s)

Static (3 s)

Upward
(30 s) + static (1 s)

Static (3 s)

Downward
(30 s) + static (1 s)

Static (3 s)

Experiment two Training Static (30 s) Static (3 s)
Upward (3 s)
Downward (3 s)

Upward (30 s) Upward (3 s)
Downward (3 s)

Downward (30 s) Upward (3 s)
Downward (3 s)
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The neural mechanism underlying the MAE was intensely
ebated since this phenomenon was reported. It is usually
xplained by the adaptation of direction-selective visual neu-
ons which respond selectively to moving contours in the image
4,32,33,41,50]. Recently, a new opinion emerged based on the
isual responses of motion-sensitive neurons in the pretectum
f pigeons [35]. These neurons responded similarly to real and
llusory contours while some of them produced inhibitory or
xcitatory after-responses to the cessation of a prolonged motion
n the preferred or null direction. Since excitatory and inhibitory
eceptive fields (RF) of these neurons were overlapped and pos-
essed opposite directionalities, they could provide a neuronal
ubstrate for the MAE perception in vertebrates.

If this conclusion applies, pigeons should be able to per-
eive the MAE after prolonged exposure to a moving stimulus.
wo successive experiments were designed to investigate this
ssumption.

. Experiment 1

.1. Materials and methods

.1.1. Subjects
Four female and four male adult pigeons (Columbia livia) with body weights

f 480–570 g were employed in the experiments. The guidelines regarding the
are and use of animals established by the Society of Neuroscience were applied.
he animals had no previous experience with behavioral experiments. During

raining and tests, they were kept on a food deprivation schedule at approximately
5% of their free-feeding weight, but water was always available in the cages.

.1.2. Apparatus
The animals were trained and tested in a cubical aluminum box

34 cm × 34 cm × 34 cm) equipped with four square-shaped pecking keys
5 cm × 5 cm) and one white house-light located at the ceiling of the cham-
er with a distance of 30 cm to the frontal panel. The feeder was located 12 cm
elow the central pecking key and 6 cm above the floor. A white feeder-light
as placed 4 cm above it. The four pecking keys were arranged like an inverted

T’ on the frontal panel. The central key was located 18 cm above the floor with
hree side keys located at its left, right and topside with distance of 2 cm to
ach other. The central pecking key was used to display visual stimuli. Three
ide keys were illuminated red (left), yellow (top) and green (right) throughout
raining and testing periods. The visual stimuli were produced by a computer
nd displayed on a monitor (HP 1530, TFT Flat Panel Display) mounted behind
he back of the frontal panel. The apparatus was controlled by an IO interface
ith 8 outputs and 12 inputs (Frank Buschmann International Corporation) via
computer.

.1.3. Visual stimuli
Pigeons scrutinize pecking keys from about a distance of 55 mm before

ecking them [21]. At this distance, the visual angle of the pecking key to the
yeball is 58.5◦. The visual stimulus was a grating pattern consisting of black
nd white equal-width stripes at a spatial frequency of 0.12 cycles/◦ and a motion
peed of 40◦/s. It had two moving directions: downward, upward or standing.

hich sequence of visual stimulus was chosen depended on the phases of the
xperiment (Table 1).

.1.4. Training and testing
The animals were first accustomed to the chamber and the pecking proce-
ure using an autoshaping design. Every day, they performed a single session
onsisting of 60 trials with 15 trials for each pecking key. For each trial, only one
f four pecking keys on the frontal panel was randomly activated 5 s followed
y 2 s access to food from the feeder. The central key was only illuminated plain
hite while three side keys were illuminated with their respective colors. During

3
b

f
w

Transfer test Static (30 s) Static (3 s)
Upward (30 s) Static (3 s)
Downward (30 s) Static (3 s)

his period, no visual stimulus was given and the animals did not need to peck
ny key to obtain food. After they accustomed to the chamber and learned to get
ood from the feeder, the training proceeded in four steps.

The first step was to train the animals to peck the activated pecking key once
o obtain food. Each session consisted of 60 trials with 15 trials for each pecking
ey and trial length of 5 s. At this step, the central key was also illuminated plain
hite and only one key was illuminated in each trial. One single correct peck
n the lighted key within 5 s activated the feeder. If the animals did not peck the
ighted key but others, 10 s of time-out without lights started followed by 20 s
f ITI (Inter-Trial Interval). Without any response, no food or punishment was
elivered. When they responded correctly in all 60 trials, the next training step
tarted. All animals quickly learned the task.

In step two, different visual stimuli were displayed on the central key to
eplace the plain white color. The animals had to first peck once on the lighted
entral key within 5 s to activate one of three side keys. Which side key was
ctivated depended on the correspondence between the visual stimulus shown
n the central key and the color/location of the side keys. For example, when
he static grating pattern was shown on the central key, the yellow illuminated
op key was activated; when the moving downward grating pattern was shown,
he red illuminated left side key was activated; when the moving upward grating
attern was shown, the green illuminated right key was activated. When one of
ide keys was activated, the visual stimulus shown on the central key was left
nchanged and the animals had to peck the activated side key once within 10 s
o get food. This method enabled a fast learning of the correspondence between
hem. When correct ratios for three consecutive sessions were all at least 95% for
ach visual stimulus, the next training started. This part lasted at least 2 weeks.

In the third step of the training period, one correct peck on the lighted central
ey during the adaptation phase activated all three side keys. Thus, the animals
ad to peck one of them according to the correspondence with the centrally
resented stimulus. This training started with a session length of 30 trials (10
rials for each grating pattern). The session length was increased by 10 trials
hen the discrimination ratio for each pattern reached at least 85% on three

onsecutive days until reaching 60 trials for each session (20 trials for each
attern). Then, the available response time was decreased from 10 s (step two) to

s. The animals needed at least 2 months to completely learn the correspondence
etween the visual stimulus and the color/location of the side key.

At step four, the threshold to activate three side keys was stepwise increased
rom five pecks within 5 s onto the central key to finally 30 correct pecks
ithin 30 s. This method was taken to ensure sufficient exposure time to the
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Fig. 1. Experimental setup for the training (A) and transfer tests (B) in experiment one. In the training period, a series of pecks on the lighted central key during the
adaptation phase activated three side keys illuminated with different colors (red illuminated left key, yellow illuminated top key and green illuminated right key). For
a centrally displayed static grating pattern, the yellow top key had to be pecked during the response phase. A downward moving grating required a peck on the red
left key, and an upward pattern required a peck on the green right key. If the birds pecked the correct side key, they were rewarded. A 20 s inter-trial interval (ITI)
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static, a moving upward or downward stimulus followed by 1 s
of a static pattern. The first condition (30 s of static pattern + 1 s
of static pattern) was used as a control to ensure that the animals
were not affected by the absence of feedback in transfer tests, but

Table 2
Correct ratios (CR) and response latencies (RL) in seconds and standard devia-
tions (S.D.) in normal trials with feedback during training and test sessions of
experiment one

Visual stimulus Training session Test session
tarted after the response phase. In transfer tests, a static stimulus was briefly sh
movement aftereffect (MAE).

llusion-inducing stimulus. The pecking counter and timer started from the first
orrect peck onto the central key. If the animal emitted sufficient pecks in less
han the necessary time, it had to go on pecking until the time criterion was
eached. If it had not pecked enough in the required time, the time span was
rolonged until enough pecks were emitted. The maximal trial length was 60 s.
uring the response phase, the visual stimulus displayed on the central key was

eft unchanged while three side keys were all activated (Fig. 1A). The animal
ad 3 s to give a response. When the correct discrimination ratios reached at
east 85% in three consecutive days, the next adaptation period before the illu-
ion transfer tests started. The animals needed at least 1 month to finish this
tep.

The critical transfer tests had to be conducted without giving the animals any
eedback in terms of reward or punishment. Therefore, no reward or punishment
as provided irrespective of their choices in 2 out of 20 trials randomly chosen
y the control program for each pattern. Using this method, they gradually
dapted to the condition in the illusion test trials. This adaptation lasted several
eeks until the correct ratio for each grating pattern was at least 85% on five

onsecutive days. When the animal reached this criterion, it started with the test
essions including the illusion test trials.

Each test session included 54 normal trials with feedback (18 trials for each
rating pattern) and 6 randomly interspersed illusion test trials without feedback
2 trials for each grating pattern). In the test trial, the animals had to peck the
entral key at least 30 times within 30 s. Then, the central key switched to a
tatic pattern display for 1 s before the three side keys were activated. The static
rating pattern was still displayed on the central key during 3 s of the response
hase until they pecked one of the three side keys. The idea behind this procedure
as to induce the MAE while seeing 1 s of the static pattern (Fig. 1B). If the

nimal can perceive the MAE, it should peck a side key signaling the illusory
ovement with the opposite direction to the visual stimulus displayed at the first

0 s. Each animal was tested every 48 h.

.1.5. Data analysis
Throughout the paper, the response latency was defined as the duration from

he onset of the three side keys activation until the first response of the animal.
he analysis of variance (ANOVA) and t-test were used to determine if there
ere any between-group differences in performance and the response latency.
ignificance was assumed when p < 0.05.

.2. Results

.2.1. Conditional discrimination training
All eight pigeons successfully mastered each task, albeit with
ndividual differences in their acquisition speed. They needed
0–90 sessions (71.25 ± 13.04, mean ± S.D.) to learn the corre-
pondence between the visual stimuli on the central key and the
olor/location of the three side keys.

S
D
U

fter the moving grating on the central key. In humans, such a sequence induces

The adaptation training including the interspersed catch tri-
ls without feedback was the last procedure before presenting
he critical transfer tests. The performance levels within the
ast 5 days in this procedure for eight pigeons were very high
Table 2, training session). The correct ratios and the response
atencies did not significantly differ for the three visual stimuli
correct ratio, F(2, 21) = 0.21; response latency, F(2, 21) = 0.56;
ll p’s > 0.57).

.2.2. Test sessions
Each session consisted of 60 trials with 20 trials for each grat-

ng pattern including two trials for transfer tests. An illusion test
rial was deemed ineffective if the animals did not immediately
witch to the activated side keys in the response phase. On aver-
ge, the ratio for such ineffective illusion trials was 20%. To rest
ur conclusion on a sound number of critical trials, test sessions
ontinued until 30 effective illusion test trials were collected for
ach visual stimulus and each animal. The needed test sessions
n average was 18.3 (S.D. = 1.39, n = 8).

The correct ratios and the response latencies within normal
rials (those with feedback and without an illusion-inducing
tatic pattern) in the test sessions (Table 2, test session) were
naffected by the presence of the interspersed critical test tri-
ls (correct ratio, F(2, 42) = 0.0989; p = 0.906; response latency,
(2, 42) = 0.015; p = 0.985). In transfer illusion test trials, the
nimals were faced with three contingencies (Table 1): 30 s of a
CR (%) RL (mean ± S.D.) CR (%) RL (mean ± S.D.)

tatic 93.3 1.03 ± 0.26 91.8 1.03 ± 0.23
ownward 93.1 1.18 ± 0.39 92 1.19 ± 0.36
pward 92.6 1.12 ± 0.17 91.8 1.06 ± 0.16
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he other conditions were critical. In the illusion test trials, if the
nimals indicated that they saw a static pattern, they probably
ad not perceived the MAE since they indeed had seen a static
attern in the last second of the adaptation phase. This result
s subsequently called the “static” result. If they pecked a side
ey that signaled the movement with the same direction to the
timulus displayed in the adaptation phase, they either did not
erceive the MAE or only reported according to the first 30 s.
e conservatively called this the “no illusion” result. However,

f they decided for a side key signaling a movement with an
pposite direction to the prolonged visual adaptation stimulus,
hey probably had perceived the MAE. This will be called the
illusion” result.

The performance of animals did not differ significantly either
or the correct ratios (F(1, 14) = 0.625; p = 0.442) or the response
atencies (F(1, 14) = 4.489; p = 0.152) between static grating tri-
ls with or without the additional 1 s of illusion-inducing static
timulus. Thus, the animals were not affected by the slightly
rolonged trial duration and the absence of feedback. We then
xplored the results of those test trials with 1 s of illusion-
nducing static stimulus after exposure to a prolonged moving
rating. The average response ratios of eight pigeons for three
ossible outcomes were 44.8% (no illusion), 23.3% (static),
nd 31.9% (illusion). The response latencies and ratios were
alculated separately for these three result types (Fig. 2). The

esponse ratios (F(2, 45) = 6.532; p = 0.003) but not the response
atencies (F(2, 45) = 0.789; p = 0.46) showed a significant differ-
nce between the three choices. Analyzing the response ratios

ig. 2. Response latencies (A) and percent response ratios (B) for three possible
hoices in experiment one: illusion (reporting an illusory movement into the
irection opposite to the adaptation phase), no illusion (reporting the factual
ovement direction during the adaptation phase) and static choice (reporting

he factually displayed static grating) during the transfer tests.
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n greater detail, we found that the pigeons had opted signifi-
antly more often for the “no illusion” alternative than for the
static” one (t30 = 3.808, p < 0.001). There were no significant
ifferences between “no illusion” and “illusion” (t30 = 2.017,
= 0.073). Finally, we compared the probability of pecking a

ide key signaling an opposite movement direction during nor-
al trials (without a 1 s static pattern at the end of an adaptation

isplay) and test trials (with a 1 s static pattern). The inclusion of
brief static pattern significantly increased the probability from
% to 31.9% (t30 = 6.051, p < 0.001).

The average “illusion” response ratios for two moving grating
atterns were 63.3% (downward) and 50% (upward). And the
wo stimuli were equally contributed to induce the MAE (F(1,
4) = 1.82; p = 0.39).

.3. Discussion

This first experiment indicates that pigeons can perceive the
AE. This conclusion rests on the observation that the animals

ecked a side key signaling “illusion” perception after the pro-
onged visual stimulus in about 32% of the critical test trials. This
ind of choice was extremely rare in normal trials when no static
attern was briefly shown at the end of the adaptation phase (see
lso Table 2). However, the illusory and non-illusory choices
ere almost equally happened on average for the eight pigeons

n the critical trials. This could be due to two different reasons.
irst, it is possible that pigeons see, if at all, only a weak move-
ent illusion. Second, the pigeons were not specifically trained

o make their choices according to the movement they perceived
t the end of the adaptation phase. Even if pigeons would per-
eive a strong MAE, their perception would be composed by a
engthy exposure to a grating moving in one direction followed
y a brief exposure to an opposite movement. Since the trans-
er tests provided no feedback to the animals, their indecision
o peck according to the first or the last perceived movement
ould not be solved. To avoid this confusion, we changed the
rocedure in the second experiment such that the animals were
nstructed to make their choices according to the last perceived

ovement on the central key.

. Experiment 2

.1. Materials and methods

The same animals, apparatus and visual stimuli described in the experiment
ne were also employed here, but seven different combinations of visual stimuli
ere used during the transition from the adaptation phase to the response phase

Table 1). Two different visual stimuli were successively shown on the central
ey. The important difference to the experiment one was that the pigeons had
o respond to the second stimulus displayed on the central key not the first one.
very day, the animals were given one session consisting of 70 trials with 10

rials for each combination. Note that during the training period, the critical
equence of a moving display followed by a static stimulus for inducing the
AE at the transfer tests was not shown. For example, at the training period,
hen the sequence “downward (30 s, adaptation phase)–upward (3 s, response
hase)” was shown on the central key, the correct peck on the green illuminated
ight side key indicating the motion upward would deliver food; but if the ani-
al pecked one of another two side keys, all lights were switched off for 10 s

Fig. 3A).
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were 62.9% (downward) and 58.8% (upward). These two visual
stimuli contributed equally to induce the MAE (F(1, 14) = 0.12;
p = 0.75).
ig. 3. Experimental setup of the training (A) and transfer tests (B) in experim
hoose a side key not according to the first central stimulus for 30 s on display
lease refer to Table 1 for the seven different combinations of visual stimuli tha

For the adaptation period before the transfer tests, no reward or punish-
ent was provided irrespective of their choices in 1 out of 10 trials randomly

hosen by the control program for each stimulus combination. The test session
ncluded 63 normal trials with feedback (9 trials for one stimulus combination)
nd 6 randomly interspersed illusion test trials without feedback (2 trials for
ne illusion-inducing stimulus combination) (Fig. 3B). A choice of the side key
ndicating upward movement after seeing the sequence “downward (30 s)–static
3 s)” would be an indicator of perceiving the MAE at the transfer tests. Each
nimal was tested every 48 h.

.2. Results

.2.1. Conditional discrimination training
The critical difference to the experiment one was that the

igeons now had to respond to the second stimulus displayed
n the central key. On average, the animals needed 63.13
S.D. = 14.9, n = 8) sessions to learn the new task.

The adaptation training including the interspersed catch tri-
ls without feedback was applied before presenting the transfer
ests. The correct ratios and the response latencies within the
ast 5 days were calculated separately according to the first
timulus (Table 3, training session). No significant differences
ere obtained with regard to response latencies (F(2, 21) = 0.15;
= 0.86) between them. However, the correct ratios for the static
attern were higher than those for the other two moving stim-
li (F(2, 21) = 12.58; p < 0.001). But the correct ratios between
wo moving stimuli did not significantly differ (F(1, 14) = 0.75;
= 0.39).

.2.2. Test sessions
For each grating pattern, 2 illusion test trials were conducted

ithin one session. In order to collect 20 effective critical trials,

he average number of needed sessions was 12.9 (S.D. = 0.99,
= 8). The correct ratios and the response latencies in the normal

rials (those with feedback and without the illusion-inducing
tatic pattern) of the test session (Table 3, test session) were

able 3
orrect ratios (CR) and response latencies (RL) in seconds and standard devia-

ions (S.D.) in normal trials with feedback during training and test sessions of
xperiment two

isual stimulus Training session Test session

CR (%) RL (mean ± S.D.) CR (%) RL (mean ± S.D.)

tatic 92.8 1.31 ± 0.26 91.1 1.39 ± 0.32
ownward 87.1 1.31 ± 0.32 86.5 1.26 ± 0.31
pward 88 1.38 ± 0.25 87.1 1.36 ± 0.25

F
c
d
m
t

wo. The critical difference to the experiment one was that the animals had to
ptation phase), but according to the subsequent 3 s stimulus (response phase).
e used.

naffected by the presence of the interspersed illusion test trials
correct ratio, F(2, 42) = 0.217; p = 0.806; response latency, F(2,
2) = 0.24; p = 0.788).

For three choices—“no illusion”, “static” and “illusion”, the
esponse latencies and ratios for each choice were calculated
eparately (Fig. 4A). The response ratios (F(2, 45) = 55.96;
< 0.001) but not the response latencies (F(2, 45) = 0.648;
= 0.528) showed significant differences between the three
hoices. And the “illusion” choices were recorded signifi-
antly more often than the “no illusion” alternatives (t30 = 3.821,
< 0.001). The average response ratios for the three choices were
2.8% (no illusion), 6.8% (static) and 60.4% (illusion) (Fig. 4B).

The average illusion response ratios for two moving stimuli
ig. 4. Response latencies (A) and percent response ratios (B) for three possible
hoices in experiment two: illusion (reporting an illusory movement into the
irection opposite to the adaptation phase), no illusion (reporting the factual
ovement direction during the adaptation phase) and static choice (reporting

he factually displayed static grating) during the transfer tests.
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.2.3. Discussion
In the experiment two, the animals were instructed to give

he response according to the second visual stimulus on display.
his difference in the procedure produced a major change in

he pattern of results. While the “illusion” and “no illusion”
hoices occurred equally in the experiment one, the response
atios to the “illusion” choices were significantly higher in the
xperiment two. Thus, it meant that the pigeons in the experiment
ne had indeed been confused between two options since the
nstructions were unclear at this point. According to the results
f experiment two, it provided considerably stronger evidence
hat pigeons can perceive an MAE after a prolonged exposure
o a moving stimulus.

. General discussion

To our knowledge, this study represents the first behavioral
vidence for the motion aftereffect (MAE) in pigeons. It there-
ore accords with the electrophysiological results of Niu et al.
35] which identified a cellular correlation of the MAE at mid-
rain level in pigeons. As we know, the birds can perceive
eometric illusions in static displays (pigeon [19,20,22,30,31])
s well as illusory contours defined by contrast gradients (pigeon
35]; barn owl [34]; chick [47,53]). The present study extents
his list for the first time to the domain of movement illusions.

Several reports indicated that in humans 20 s of prolonged
isual stimulation can subsequently elicit an MAE [27,35].
hus, 30 s of prolonged visual stimulus was used in the current
xperiment in order to induce an MAE in pigeons.

A classic explanation for the MAE assumes a neural adapta-
ion process in which the direction-selective neurons coding for

particular movement reduce their responses after prolonged
xposure to a constantly moving stimulus [4,32,33,41,43].
nder normal conditions, the outputs of neurons tuned to differ-

nt directions are balanced when looking at a stationary scene.
owever, the adaptation to the prolonged moving stimulus leads

o a decrease of output in that direction. It is also this adap-
ation which finally elicits a perception of movement into the
pposite direction after seeing a static display. Niu and col-
eagues [35] proposed a new neural mechanism for the MAE
ased on the single cell recordings from the avian nucleus
entiformis mesencephali (nLM) of the pretectum. According to
heir data, motion-sensitive pretectal neurons have overlapped
xcitatory and inhibitory receptive fields with opposite direc-
ionalities [9,16,17]. Thus, they could show that the inhibitory
fter-response subsequent to a prolonged motion stimulus was
dentical to the inhibitory response due to the exposure to a

ovement into the opposite direction of the preferred one. This
rrangement could be a powerful cellular mechanism to cre-
te illusory motions with the opposite direction to the previous
timulus. Since the nLM projects via the visual thalamus to the
orebrain [23,24,51], it is possible that the MAE is integrated at
elencephalic level to guide goal-directed behavior as analyzed

n the present study.

The avian nLM corresponds to the nucleus of the optic tract
NOT) in the pretectum of mammals which also is involved
n generating optokinetic nystagmus (OKN) [29,52]. Usually,

[

[
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t is suggested that the MAE in humans is based on cortical
rocesses [2]. Brain imaging data showed that cortical areas
ensitive to visual motion are activated during the waterfall illu-
ion [26,28,46] and the activity level is related to the occurrence
nd strength of the MAE [3,42,44]. However, based on electro-
hysiological [35] and behavioral (present study) evidences in
igeons, it might be conceivable that in humans the MAE or the
aterfall illusion also starts at midbrain level although its final
erception is based on cortical mechanisms.
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