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A B S T R A C T

Recognizing and categorizing visual stimuli are cognitive functions vital for survival, and an important feature of
visual systems in primates as well as in birds. Visual stimuli are processed along the ventral visual pathway. At
every stage in the hierarchy, neurons respond selectively to more complex features, transforming the population
representation of the stimuli. It is therefore easier to read-out category information in higher visual areas. While
explicit category representations have been observed in the primate brain, less is known on equivalent processes
in the avian brain. Even though their brain anatomies are radically different, it has been hypothesized that visual
object representations are comparable across mammals and birds. In the present study, we investigated category
representations in the pigeon visual forebrain using recordings from single cells responding to photographs of
real-world objects. Using a linear classifier, we found that the population activity in the visual associative area
mesopallium ventrolaterale (MVL) distinguishes between animate and inanimate objects, although this distinction
is not required by the task. By contrast, a population of cells in the entopallium, a region that is lower in the
hierarchy of visual areas and that is related to the primate extrastriate cortex, lacked this information. A model
that pools responses of simple cells, which function as edge detectors, can account for the animate vs. inanimate
categorization in the MVL, but performance in the model is based on different features than in MVL. Therefore,
processing in MVL cells is very likely more abstract than simple computations on the output of edge detectors.

1. Introduction

Possibly all vertebrates need to categorize the various stimuli sur-
rounding them. Categorization is an important step beyond mere dis-
crimination and constitutes the ability to respond equivalently to
members of the same class, to respond differently to members of a
different class, and to transfer this distinction to novel members of these
classes [1]. As such, categorization is a key component of cognitive
systems since it drastically reduces information load [2].

Category-relevant neuronal representations were mostly studied in
primates [e.g., [3–5]]. Using fMRI, Huth et al. [6] found that category
representations in the human inferior temporal cortex (ITC) form a
semantic map. Intriguingly, Kriegeskorte et al. [7] found similar re-
presentations in macaque and human ITC using single-unit recordings
and imaging, respectively. These findings suggest a common code of
object representation across primate species.

On a behavioral level, categorization has been studied in many non-

primate species (for review see [8]). Pigeons were the first non-human
animals in which the ability to categorize was demonstrated [9] and are
presently the best-studied animal model for categorization at beha-
vioral level. Pigeons successfully learn to categorize vertebrates [10],
martial arts poses [11], malignant cancer cells [12] and Cubist painting
styles [13]. Pigeons even successfully learn to discriminate English
words from non-words [14]. Taken together, pigeons have un-
expectedly large resources to learn various perceptual categories.

On an anatomical level, the brain structures involved in the process
of categorization differ between birds and mammals. The telencephalon
of both groups is composed of two major subdivisions: the pallium and
the subpallium. Subpallial components are relatively conserved among
birds and mammals. In contrast, there are remarkable differences in the
pallial organization: in mammals it includes the six-layered cortex. In
contrast, the pallium in birds is organized in a nuclear fashion [15]. A
morphological identifiable layered cortex is absent and there is no
structure that directly corresponds to the primate ITC. Despite the
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differences in gross anatomy, nuclear structures in the pallium of birds
share homology with laminar specific neuronal populations in mam-
mals: the avian entopallium may share homologies to layer 4 input
neurons of the neocortex, receiving sensory thalamic input. Some
neurons in arcopallium share homology with layer 5 output neurons
projecting to the brainstem [16]. Albeit sharing their pallial origin, no
one-to-one homologies of cortical areas and counterparts in the avian
pallium can be derived. However, multiple studies show that mammals
and birds command similar cognitive abilities [17,18], suggesting that
cognitive functions are to some extent invariant to neuroanatomical
differences. Consequently, it is conceivable that birds might represent
categories with neuronal population level principles similar to pri-
mates. The current study investigates this possibility.

Several structures in the pigeon brain are involved in visual pro-
cessing. We will focus on the tectofugal system since it controls visual
processing of stimuli in the frontal visual field, where stimuli are
usually presented during behavioral tasks [19,20]. The tectofugal
pathway (Fig. 3) ascends from the retina via the midbrain optic tectum
and the thalamic nucleus rotundus to the telencephalic entopallium
[21]. The entopallium is anatomically and functionally similar to the
primate extrastriate cortex [22–26]. Entopallial neurons modify their
firing patterns according to reward-associated task contingencies [27]
and are involved in visual working memory [28,29].

Entopallial neurons have reciprocal connections with surrounding
associative areas like the nidopallium frontolaterale (NFL); the meso-
pallium ventrolaterale (MVL), and the nidopallium intermediale pars
lateralis (NIL) [30–32]. The NFL, for example, processes motion and
color [32] and NFL population responses distinguish between simple
stimulus features, such as color and spatial frequency [33].

Apart from these studies, the physiology of visual areas beyond the
entopallium is mostly unknown, and there is no evidence to date for
high-level categorical object representation in any region in the avian
brain. To close this gap, we investigated at which stage of the tectofugal
pathway category information is represented in a way that it can be
easily read out. In the experiment, pigeons viewed photographs of real-
world objects, while we recorded from single neurons in the primary
visual entopallium and the higher-order visual associative area MVL.
Using multi-variate analyses, we found that the population of recorded
MVL, but not of entopallium cells represents the distinction between
animate vs. inanimate objects. Our results thus show for the first time
that the visual processing hierarchy of the pigeon transforms visual
inputs such that category information become easier to read out.

2. Materials and methods

2.1. Subjects

Four adult homing pigeons (Columba livia) were obtained from local
breeders. The pigeons were housed in individual wire-mesh cages with
a 12 h light–dark cycle beginning at 08.00 a.m. They were fed with a
mixture of grains and maintained at approximately 80–90% of their
free-feeding body weight. They had free access to water. Handling of
the pigeons was in accordance with the National Institute of Health
Guide for Care for Laboratory Animals, and the experiment was ap-
proved by the state authorities of North-Rhine Westphalia, Germany.

2.2. Apparatus and stimuli

All sessions took place in a custom-built operant chamber
(35 cm×35 cm×35 cm) with three horizontally aligned pecking keys
(4 cm×4 cm, 17 cm above the floor). Stimuli were presented on a
central pecking key and a food hopper delivered mixed grains as re-
ward. Stimuli were presented on a LCD flat screen monitor mounted
behind the pecking keys.

The stimulus set was the same as used in [7]. Fig. 1 shows all 96
color photographs of isolated real-world objects on a gray background.

The pictures are divided into animate objects and inanimate objects.
These classes are further subdivided into human and non-human ob-
jects, and in natural and artificial objects. Pigeons were not required to
perform categorization of these stimuli in the behavioral task.

2.3. Experimental design and statistical analysis

2.3.1. Experimental paradigm
Experiments were conducted daily, five days a week. Each daily

session consisted of 960 trials, which were divided into 10 blocks. In
each block, the entire stimulus set was presented in a randomly per-
muted order. The order of presentations was therefore different in each
block. A schema of an individual trial is depicted in Fig. 2. Each trial
began with the appearance of an initialization image which was visible
for up to 2 s and disappeared once pecked. After a short delay of 0.2 s,
one of the sample stimuli was presented for a fixed interval of 2 s.
During stimulus presentation, the pigeon was allowed to peck the
presented stimulus without restriction. To ensure that the pigeons were
looking at the stimulus, they had to peck the stimulus at least once to
proceed in the trial. After the stimulus presentation and a short delay
(0.2 s), the initialization key was presented again. Again, this image was
presented for up to 2 s and disappeared once pecked. If the pigeons
successfully pecked at all three images within a trial, they were re-
warded. Access to food was granted with a probability of 55–70% ac-
cording to the weight and the performance of the individual pigeon.
The feeding period lasted for 2 s. Regardless of the delivery of a reward,
a feeding light affixed above the food hopper was always on during this
period, serving as a secondary reinforcement. After the reward period, a
6 s inter-trial-interval (ITI) preceded the next trial. When the pigeons
failed to peck in any phase as required, the trial was aborted and the ITI
followed immediately. All experimental hardware was controlled with
custom-written Matlab code (MathWorks, Natick, MA, USA) with the
aid of the Biopsychology toolbox [34].

2.3.2. Surgery
After behavioral training, pigeons were implanted with custom-built

microdrives [35–38]. Each microdrive housed seven electrodes made of
25 μm formvar-coated nichrome wires (Science Products GmbH, Hof-
heim, Germany) and one additional 76 μm heavy-polyimide-coated
stainless steel wire serving as reference (Franco Corradi, Milano, Italy),
which were connected to microconnectors (Omnetics Connector Cor-
poration, Minneapolis, USA). All pigeons were implanted with two
microdrives, one in each brain hemisphere. Pigeons were initially an-
esthetized with a mixture of ketamine and xylazine (ratio 7:3) with
0.075ml per 100 g body weight. Anesthesia was maintained with iso-
flurane during the entire surgery. Feathers overlaying the ears and on
the scalp were trimmed and the pigeons were placed in a stereotaxic
apparatus. The scalp was then cut and retracted to expose the skull. Six
stainless steel screws (Small Parts, Logansports, USA) were subse-
quently placed into the skull to hold the implant. Two holes were
drilled into the skull above the right and left MVL/entopallium. Co-
ordinates were chosen according to the stereotactic atlas of the pigeon
brain [39]. Coordinates of the exact electrode placement are given se-
parately for each pigeon in Table 1 and the histological electrode track
reconstruction is depicted in Fig. 3. The tips of the electrodes were then
lowered into the brain to position them above the MVL. An additional
hole was drilled into the skull to insert a 200 μm teflon-coated silver
wire (Science Products GmbH, Hofheim, Germany) with its tip melted
to a ball serving as ground for electrophysiological recordings. Dental
acrylic was used to attach the microdrives to the screws and skull. The
incision was sutured and covered with antibiotic ointment. Once fully
alert and mobile, the pigeons were returned to the home cage and
treated with analgesics (Carprofen, 10mg/kg) for three consecutive
days. After a recovery period with unlimited access to food for at least
seven days, recording sessions started.
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Fig. 1. The 96 visual stimuli used in the experiment. The stimuli are color photographs of isolated real-world objects on a gray background. They belong to different
categories. At the coarsest level, they can be classified into animate and inanimate categories. These two classes, in turn, are further divided into different sub-
categories as indicated in the figure. Reproduced with permission from [7].
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2.3.3. Neuronal recording
We recorded from both the right and the left hemisphere in four

birds. In every session, we stored the output of eight electrodes, one
serving as reference. Signals were fed through a miniature preamplifier

(10×), subsequently amplified 1000× and filtered online (300 Hz
high-pass filter, 5 kHz low-pass filter; Multi Channel Systems MCS
GmbH, Reutlingen, Germany), and digitized using an analog-to-digital
converter (sampling rate: 20 kHZ; Micro 1401mkII, Cambridge
Electronic Design, Cambridge, UK). Neuronal activity was recorded
with Spike2 Version 7.06a (Cambridge Electronic Design, Cambridge,
UK). Spike sorting was performed offline using amplitude thresholds for
initial spike detection and a principal component analysis for manual
sorting. Sorting quality was checked with custom-written Matlab code
(The Mathworks, Natick, MA, USA) and the aid of the MLIB toolbox
(written by Maik Stüttgen, available at Matlab central file exchange). A
conservative approach to classify neuronal activity as originated from
single units was adopted. Single units had to show (1) a clearly dis-
tinguishable cluster in principal component space, (2) show a symme-
trical and unimodal distribution of peak waveform amplitudes without
evidence of false negative classifications, (3) show no sign of over-
lapping multiple units in the waveform overlay and density plots, (4)
have inter spike intervals larger than 1ms, and (5) a signal-to-noise
ratio of at least 2. The signal-to-noise ratio was calculated as the dif-
ference between the minimum and maximum of the averaged wave-
form, divided by the central 95% range in the noise distribution.
Additionally, we visually checked for movement related artifacts (from
e.g. key pecking and wing flapping) and by inspecting peri-peck time
histograms for peaks or troughs of spiking activity near time point 0.
For a more detailed description of materials, recording, and spike
sorting procedure see [37,38].

2.3.4. Histology
For histological electrode track reconstruction, the pigeons were

deeply anesthetized with Equithesin (4.5–5.5 ml/kg body weight) and
transcardially perfused with physiological saline followed by 4% for-
maldehyde. 0.1 ml heparin was injected prior to anesthesia to prevent
blood coagulation. Brains were embedded in gelatin and sectioned at
40 μm, Fig. 3. Slices were stained with cresyl violet. The position of the
electrode tracks were analyzed under a microscope according to the
pigeon brain atlas of [39].

2.3.5. Analysis of category information in neuronal populations
For every recorded single unit, we calculated the average number of

spikes per stimulus presentation. For each stimulus, we collected the
average spike numbers of all recorded neurons into a population vector
x, even if neurons were recorded in different sessions. The population

Fig. 2. Sequence of one trial. The initialization key was visible for up to 2 s and
disappeared if pecked once. After a short delay (0.2 s) one of the 96 sample
stimuli was shown for a fixed interval of 2 s in randomized order and had to be
pecked at least once. At the time of stimulus presentation neuronal responses
were analyzed. After another delay of 0.2 s the initialization key was shown
again and had to be pecked once to finalize the trial. After pecking on all three
stimuli, a food-reward was delivered and the inter-trial interval (6 s) followed.

Table 1
Number of cells recorded from MVL or entopallium (ENT) in the two hemi-
spheres.

Left Right ∑

MVL 32 4 36
ENT 6 29 35
Total 38 33 71

Fig. 3. Visual pathways in the pigeon brain and histological
electrode track reconstruction. (A) Sagittal view of the pigeon
brain [40]. The structures involved in visual processing are
highlighted to give an overview of the visual pathways in the
pigeon brain. nRt is nucleus rotundus. (B) Sagittal view of the
pigeon brain including the coronal plane of the electrode posi-
tions. (C) Left: Coronal section of the plane highlighted in B (AP
+11). In the photograph, one hemisphere is shown and the
electrode track can be seen reaching into the entopallium. Right:
Schematic drawing of the structures in this section of the brain.
Drawings are based on the pigeon brain atlas by Karten and Hodos
[39]. (D) Electrode track reconstruction for all pigeons used in this
study collapsed on the AP +11 coronal section of the pigeon
brain. Electrode tracks of different pigeons are indicated by un-
filled bars and labelled with the corresponding pigeon number.
The filled parts of the bars show the recording sites.
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vector is a window into the neural representation of that particular
stimulus, which we focus on in this study. Our goal is to study whether
the population vector of neurons in the pigeon brain represents cate-
gorical information. Specifically, we view each population vector x as a
point in a high dimensional space, representing one visual stimulus, and
ask whether the points can be segregated (classified) based on the ca-
tegory of the stimulus. As a classifier, we adopt linear discriminant
analysis (LDA), which identifies a linear boundary between data points
from two categories (Fig. 4). Since our stimulus set contained several
(sub-)categories, we trained the LDA classifier on each category of in-
terest, in comparison with all other stimuli that were not in that cate-
gory, i.e., the labels for each population vector was either in-class or
out-class.

In LDA, the boundary between categories is calculated as:

= +g θx W x( ) ,T (1)

where W defines the direction of the linear boundary and θ its offset. A
population vector belongs to the training category, if g(x)≥ 0, other-
wise it does not. LDA finds the linear function that yields the maximum
ratio of between-class scatter to within-class scatter on the training data
[41], i.e.,
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The LDA classifier can learn to distinguish two categories at a time.
To evaluate the performance of the LDA classifier on multiple cate-
gories, we calculated a confusion matrix [4]. We randomly assigned
half of the population vectors to the training data, and the remaining
population vector to the test data. We labeled the stimuli in the training
data as in-class or out-class separately for each category, trained a LDA
on this data, and then used that classifier to classify the population
vectors in the test data. Test performance was evaluated separately for
each category and quantified as the fraction of correct classifications.

Since the results of this procedure depends on the (random) assignment
of population vectors to training or test data, this entire procedure was
repeated 1000 times, and the average classification score was calcu-
lated for all categories, which form the confusion matrices.

To determine the statistical significance of the classifier perfor-
mance, we computed the classification score on permuted data, where
the class labels of the images in the test sets were randomly permuted.
As in this case no categorical information was present in the test set, the
classifier should perform at the level of random guessing. When cate-
gories have an equal number of stimuli, the most naïve approach would
be guessing with equal probability, so chance performance is 50%. If
the number of stimuli in the two categories are different, the optimal
strategy would be to guess each category according to the fraction of
stimuli in that category, which is also chance performance. If, however,
the neuronal activity represents categorical information, the classifier
performance on the recorded data with correct class labels should be
significantly better than the performance on the permuted data. We
used the two-sample Kolmogorov–Smirnov test to compare the classi-
fier performance between the two cases, real and permuted data, se-
parately for each category (α=0.01).

3. Results

3.1. Histology, neuronal recordings, and visual responsiveness

We recorded from a total of 71 single units in 4 pigeons. The single
units fired with a mean rate of 4.63 Hz (range: 0.2–27.3 Hz).
Comparison of histological track reconstruction with the pigeon brain
atlas confirmed the position of the electrodes in the anterior en-
topallium and the MVL (from 10.5+AP to 11.25+AP, Fig. 3). From
depth records we reconstructed the recording sites in each pigeon and
each hemisphere. According to this analysis 36MVL single units and 35
entopallial single units were recorded. The number of recorded cells per
hemisphere is summarized in Table 1.

Consistent with the visual function of entopallium and MVL, the
recorded cells were activated by visual stimulation (Fig. 5). The in-
stantaneous firing rate r of a representative cell increased when the
visual stimulus was presented to the pigeon at t=0 s (Fig. 5A). To
verify the visual responsiveness of all of the recorded cells, we calcu-
lated the response index (RI),

=
−

+

r s r b
r s r b

RI | ( ) ( )|
( ) ( )

,
(5)

Fig. 4. Illustration of linear discriminant analysis (LDA). LDA is a
linear classifier that assigns data points to two different classes
based on a linear category boundary (black line). The classifier
has to be trained with labelled data (the class label is indicated by
the color of the data points). LDA will find a category boundary,
regardless of whether the data are well segregated by a linear
boundary (A), or not (B). The quality of the classifier is measured
by the fraction of correctly classified data points (0.95 for A versus
0.58 for B).
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where r(b) and r(s) are the average firing rates of a given cell in the
time-window of 200ms before and after the stimulus onset across trials.
As a control, we calculated RI for two time windows in the ITI during
which there was no stimulus presented on the screen. The population of
cells in the entopallium or in the MVL in both hemispheres show sig-
nificantly higher RI around stimulus onset as compared to the ITI
control (Fig. 5B, top panel), suggesting that cells in all recorded areas
were responsive to visual stimulation.

Even though the activity levels of cells were modulated by visual
stimulation, their mean activity levels did not differ systematically
between categories. For the coarsest category distinction, i.e., animate
versus inanimate stimuli, we recorded 29,065 neural responses to ani-
mate and 29,054 responses to inanimate objects (total 58,119). The
firing rate of cells were indistinguishable when averaged over all re-
corded cells (4.38 Hz for animate vs. 4.36 Hz for inanimate objects,
p=0.52; paired t-test). Similarly, The average firing rates of cells in
entopallium and MVL were similar (4.76 Hz for entopallium and
4.14 Hz for MVL, p=0.51; paired t-test). We next asked whether in-
dividual cells are selective for the animate vs. inanimate distinction
(e.g., Fig. 5C). To examine this systematically, we calculated the se-
lectivity index (SI) for each cell,

=
−

+

r r
r r

SI | | .anim inanim

anim inanim (6)

ranim and rinanim are the firing rates of a cell in response to 2 s of stimulus
presentation, averaged over animate or inanimate stimuli, respectively.
As a control, the selectivity index was calculated on the same neural
responses with the animate and inanimate labels randomly shuffled.
These selectivity indices in all four regions were not significantly dif-
ferent from the random shuffle (Fig. 5B, bottom panel). So neither
entopallial nor MVL cells seem to carry category individually.

3.2. Population activity reveals category information

While we found no evidence of category information in individual
cells, it might be evident in the population response. We therefore used
linear discriminant analysis (LDA) to analyze the population activity.

We trained a linear classifier on half of the labeled data, and tested the
performance on the other half of the data. When analyzing population
responses of entopallial cells, LDA did not classify the stimuli better
than chance for any (sub-)category (Fig. 6). The performance on the test
data is summarized in the confusion matrix (Fig. 6A). The diagonal cells
show the fraction of correct classifications (indicated by the orange
box), and the off-diagonal cells the fraction of incorrect classifications.
The performance on the animate vs. inanimate classification of 0.62
was not significantly higher than expected by chance. Significance was
evaluated by comparing the classification performance to the dis-
tribution of the classification scores on 1000 randomly labeled test sets
(Fig. 6B). Here, the control classifier scores were calculated using cor-
rectly labeled data as the training set and randomly labeled ones as the
test set for the LDA. By contrast, the population responses of MVL cells
significantly distinguished between animate and inanimate categories
based on LDA with a hit rate between 0.68 and 0.70 (Fig. 6). So, ca-
tegory information was more accessible in MVL than in the processing
stage below, in the entopallium. This difference cannot be explained by
a difference in visual responsiveness of the two areas since cells in the
entopallium exhibited similar, if not higher, responsiveness scores than
cells in the MVL (Fig. 5B). Another way to show the difference in
classification performance between MVL and entopallium is by looking
at the receiver operating characteristic (ROC). Each point in this graph
corresponds to randomly splitting the data into training and test sets
(Fig. 6C, F). The ROC curve for the MVL is further away from the di-
agonal, which represents random guessing, than the ROC curve for the
entopallium (area under curve: 0.68, 0.75 for entopallium and MVL,
respectively).

It is conceivable that the stimuli in the animate and inanimate ca-
tegories have many different low-level features, and that the MVL cells
were sensitive to these differences (Fig. 1). However, Kriegeskorte et al.
[7], from whom we obtained the stimulus material, confirmed that low-
level features in the stimuli such as, e.g., color and image resolution,
cannot distinguish on their own between animate and inanimate cate-
gories (cf. their supplementary figures S6 and S7). It is thus more likely
that the MVL population represents more abstract features of the

Fig. 5. Individual cells were responsive to visual stimulation,
but not selective for categories. (A) Post-stimulus time histo-
gram of a typical cell. The response of this cell to a stimulus
was recorded in 10 different trials. Each tick-mark shows one
spike of the cell. The spike-density function of the cell,
smoothed with a Gaussian kernel (σ=60ms) is shown in the
lower panel. (B), top panel The response index (RI) of the cells
in each of the recorded areas. The cells in all regions exhibit a
significant RI around stimulus onset (black marks) as com-
pared to the RI in the ITI, when there was no visual stimulus
(red marks) (p-values: 1.08×10−17, 3.93× 10−34,
4.39×10−10, 1.35×10−5, Wilcoxon rank-sum test). Bottom
panel The average selectivity index (SI) of the cells in each of
the recorded areas (black marks). None of the SI is sig-
nificantly different from a random shuffle (red marks), where
the animate and inanimate labels have been randomly per-
muted (p-values: 0.52, 0.87, 0.67, 0.39, Wilcoxon rank-sum
test). Vertical bars show the s.e.m. (C) The response of two
selected cells. The average firing rate does not distinguish
between different stimulus categories. Blue regions mark
animate stimuli (dark blue for human images and light blue
for non-human images) and the purple regions mark in-
animate stimuli (dark purple for natural and light purple for
artificial objects). (For interpretation of the references to color
in this legend, the reader is referred to the web version of the
article.)
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stimuli that allow LDA to classify the stimuli.
To further analyze the nature of this information, we subdivided the

stimuli in the animate category into human and non-human sub-cate-
gories, and those in the inanimate category into artificial and natural
sub-categories. We then applied the binary LDA to these sub-categories
(Fig. 7). Only the human subcategory can be distinguished from the
other subcategories when using MVL population activity, and the se-
lectivity of MVL cells to stimuli in the human subcategory are re-
sponsible for the animate vs. inanimate distinction (Fig. 7). The average
firing rate of the cells in response to stimuli in the human category was
not significantly different from the responses to the other stimuli
(4.36 Hz for human, 4.40 Hz for the other stimuli, p=0.25; two-sample
t-test). Hence, the information of the human category was only ap-
parent in the population response, not at the single cell level.

To directly test whether the classification of animate vs. inanimate
objects was solely based on the classification of the human subcategory,
we repeated the animate vs. inanimate classification without the stimuli
of the human subcategory (Fig. 8, “non-human vs. inanimate”, last
column). The classifier could then no longer significantly distinguish
between the remaining animate (i.e., non-human) and inanimate

stimuli. This shows that the features that are readable by a simple linear
classifier are expressed in the responses of the cells to images of human
faces and human body-parts. The limited number of stimuli per cate-
gory do not allow us to further subdivide our stimuli to pinpoint more
precisely what category feature the population responds to.

It is conceivable that the difference in the representation of category
information between MVL and entopallium arises from the random
sampling of recorded neurons, which happened to select more, and/ or
more strongly, category-coding neurons in MVL than in the en-
topallium. This scenario is not highly likely since the number of re-
corded neurons in MVL and entopallium were well balanced in our
study (n=36 and n=35, respectively). Nevertheless, as the number of
recorded cells was somewhat small in both regions, we performed a
subsampling analysis to examine whether the entopallial population
reflected any category information that does not rise to the level of
significance in our analysis. If this were the case, we would expect that
including more and more cells in the analysis would make the analysis
more and more probable to yield a significant classification.
Specifically, we randomly subsampled different numbers of neurons
from the recorded populations and repeated our classification analyses

Fig. 6. The population response of MVL, but not entopallial cells revealed category information in a linear discriminant analysis. (A) The confusion matrix of the
classifier when distinguishing between animate and inanimate objects, using the population response of recorded neurons in the entopalium. Diagonal cells indicate
rates of correct classifications (indicated by the orange box), off-diagonal cells the rates of incorrect classifications. (B) The classification score for the classifier on the
entopallial population and correctly labeled test data is marked with an orange bar. The distribution of classification scores on randomly labeled test sets is shown by
the box-whisker plot. If the orange bar is clearly outside the range indicated by the whiskers, the performance of the classifier is significantly better than chance. In
this case, the classification performance is not significant. (C) The receiver operating characteristic curve for entopallium on the animate and inanimate categor-
ization. Area under curve: 0.68. The diagonal dashed line represents random guessing. (D) The confusion matrix of the classifier when distinguishing between
animate and inanimate objects, using the population response of recorded neurons in MVL. Diagonal cells indicate rates of correct classifications (indicated by the
orange box), off-diagonal cells the rates of incorrect classifications. (E) The performance of the classifier on the MVL population is significantly better than chance.
Plotting convention as in B. (F) The receiver operating characteristic curve for MVL on animate and inanimate categorization. Area under curve: 0.75. (For inter-
pretation of the references to color in this legend, the reader is referred to the web version of the article.)
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(Fig. 9). For each subsample size, the fraction of 300 random sampling
that lead to significant classification was calculated. The subsampling
analysis revealed that, for the entopallial population, the fraction of
significant classification was constant at a low value as the subsample
size increased (Fig. 9, blue line), suggesting that the entopallial popu-
lation indeed did not contain category information that LDA can ex-
tract. By contrast, the subsampling analysis on the MVL population
revealed that the likelihood of significant classification clearly in-
creased monotonically with subsample size (Fig. 9, orange line). While
this result was expected, if at least a subpopulation of MVL neurons
encode category information, the subsampling analysis worked sur-
prisingly well for the small total number of MVL cells in our recordings.

3.3. Comparing category coding in MVL and entopallium to a model of
simple cells

Little is known about the functional selectivity of cells along the
avian tectofugal pathway [42]. In an attempt to better understand the
neuronal responses that we have recorded in the MVL and entopallium,
we compared our experimental results with a computational model of
visual processing in the pigeon inspired by the one proposed by Soto

and Wasserman [43]. In this model, the function of the first stages of
processing are comparable to the responses of simple cells in the pri-
mary visual cortex of primates. A common model for their response
function has been Gabor filters [44,45] (see Fig. 10).

If Gabor filtering is an applicable model for visual processing in the
MVL and entopallium, or downstream of them, we would expect that a
LDA on the output of a bank of Gabor filters applied to the visual stimuli
used in our experiment would produce similar classification results as
observed in our experiment. We used a bank of 68 Gabor filters with
different orientation and frequency. Each stimulus was convolved with
these filters to obtain a representation of the stimulus that accentuates
the edges of the image (Fig. 10C). We then calculated the sum of the
absolute values of all pixels in the results of these convolutions. This
sum represents the response of a single model cell, which might, or
might not, bear similarity to MVL or entopallial responses. The vector of
68 responses was treated and analyzed in exactly the same way in
which we analyzed the experimentally recorded population responses
(Fig. 11).

To our surprise, the performance of the classifier on these model cell
responses was similar to that on MVL responses for the animate–ina-
nimate classification (Fig. 11A and B). However, when examining the
performance of the model cells on the subcategories, we found that the
model cells significantly code for the subcategories “humans” as well as
“artificial objects”. In addition, the classification score was much higher
for the artificial category than for the other subcategories (Fig. 11C and
D). This pattern contrasts with the experimental data on the MVL po-
pulation (Fig. 8). So, the Gabor filter model accounts for the coarser
distinction between animate and inanimate categories in MVL cells, but
differs in performance on the more fine-grained subcategorization
(human, non-human, natural objects, and artificial objects). In other
words, the Gabor filter model captures some aspect, but not the details,
of the computation giving rise to MVL responses. Our results therefore
indicate that MVL cells are not merely summing the output of edge
detectors, and that different or additional functional processing must
occur in the visual system of the pigeon leading up to, and/ or in the,
MVL.

Fig. 7. Classification of subcategories is apparent in MVL, but not in the en-
topallium. The performance of the classifier when using true-labeled data in
four subcategories (red bars) compared to the distribution of classification
scores on data with shuffled labels. (A) For entopallial cells, the classifier did
not perform better than the chance level for any subcategory. (B) For MVL cells,
linear discriminant analysis could significantly distinguish the human sub-
category. (For interpretation of the references to color in this legend, the reader
is referred to the web version of the article.)

Fig. 8. Summary of the significance of classification based on different cate-
gories and for different neural populations. The numbers are the p-values of the
shuffle test, the background color of each cell indicates three ranges of the p-
value as shown in the color bar. For MVL cells, the classifier could significantly
distinguish between animate and inanimate objects. By contrast, entopallial
cells did not perform significantly better than chance on any classification.
Stimuli in the human subcategory accounted for the animate–inanimate clas-
sification in the MVL population. No other subcategory within the animate and
inanimate categories lead to a significant classification. Also, when excluding
images of human faces and body parts from the animate category, the classi-
fication (non-human vs. inanimate) failed.

Fig. 9. Subsampling analysis of classification performance in MVL and en-
topallium. Shown is the fraction of analysis trials that reach significance
(α=0.01) as a function of the number of cells included in the subsample. For
each subsample, cells are drawn randomly from the indicated population.
Classification scores are assessed on the subsample in the same way as on the
complete dataset. This analysis is repeated 300 times for each subsample size,
which allows for the calculation of the fraction of analysis trials that yield
significant category information that LDA can extract. MVL population (orange
line). Entopallial population (blue line). (For interpretation of the references to
color in this legend, the reader is referred to the web version of the article.)
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4. Discussion

We found categorical representations of complex visual stimuli in a
visual association area of the pigeon brain. Pigeons were exposed to
photographs depicting real-world objects while single-unit activity was
recorded in two visual forebrain structures of the tectofugal pathway:
the entopallium and the mesopallium ventrolaterale (MVL), a visual
associative area. Importantly, the birds only had to perceive the stimuli
and categorization was not required in the task. In our experiment,

response rates of individual neurons did not significantly distinguish
between visual categories. In the entopallium, there also was no dis-
tinction between categories at a population level, at least none that
could be extracted using linear discriminant analysis (LDA). In contrast,
the MVL population showed significant categorization along the ani-
mate/inanimate border, mainly driven by the category “human”. The
reliability of correct categorization increased monotonically with the
number of MVL neurons such that only tens of neurons are sufficient to
build up reliable categorical object representation.

Fig. 10. Illustration of Gabor filters in image processing. (A) An
example of an image. (B) The result of the convolution between
the image and a Gabor filter. (C) A bank of 68 Gabor filters, each
with different orientation and frequency, was used as a model of
visual processing by simple cells. Shown are the results of the
convolutions between these Gabor filters and the image depicted
in (A).

Fig. 11. Classification performance of a model based on Gabor
filters. (A) Confusion matrix for the LDA classification be-
tween animate and inanimate categories. (B) Comparison to a
distribution of classification score on randomly labelled data
shows that the classification based on model cell responses is
significantly better than chance. (C, D) Classification perfor-
mance on subcategories is significantly better than chance for
the subcategories “humans” and “artificial objects”. (For in-
terpretation of the references to color in this legend, the
reader is referred to the web version of the article.)
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4.1. Implications of the LDA results for neural coding in MVL and
entopallium

The fact that LDA cannot classify the population responses in the
entopallium does not necessarily mean that there is no category in-
formation. Category information is obviously present in the retina and
all early stages of visual processing, even if it cannot be extracted from
the entopallial cells using a linear classifier. So, what does our finding
that LDA reveals category information in MVL, but not in the en-
topallium, tell us about neural coding in these areas?

The visual system in vertebrate brains is hierarchical. Canonical
neural computations repeatedly applied in different stages of the visual
hierarchy enable higher areas to perform more sophisticated operations
on the input data than lower areas can [44]. In other words, each cell in
the hierarchical layers of the visual system pools the activity of many
cells in the lower input layer. The visual system does this, supposedly,
to recode the same information in a different format that can be read
out by downstream neurons. So, it is not so much the information that is
contained in the population per se, but rather the neural coding of that
information that matters. In this light, what we found is a hint that the
MVL and entopallium employ different codes for representing visual
information and that the code employed by MVL, but not of en-
topallium, makes it possible to read out categorical information easily,
i.e., using LDA. Furthermore, we note that pigeons in our experiment
were not required to learn the categories of the stimuli. It is conceivable
that learning would change the category coding properties of the en-
topallium and MVL, and that one would find different results from the
reported ones in a learning task.

4.2. “Humans” as a potential special category for laboratory pigeons

Why might MVL cells encode the human category, even though the
animals were not required to learn any categories in our study? Since
the pigeons in our study had rich experience with humans handling
them, at least parts of the “human”-specific coding in MVL recordings
might have resulted from experience with humans. Consequently, the
absence of population responses to the other categories could be partly
due to the absence of respective experiences with these objects. Aust
and Huber [46] have suggested that pigeons’ representation of humans
was shaped by visual experience with live humans and their constituent
parts by investigating two groups of pigeons that had different pre-
experience with live humans. Pigeons therefore likely recognize the
relation between pictures of humans and their 3-D-referents ([47,48]
but see [49]). When pigeons were conditioned to discriminate between
hundreds of photographs of which some depicted humans, they trans-
ferred this knowledge to novel photographs [9], demonstrating that
pigeons acquired the category “human”. Subsequent studies confirmed
that indeed human features had driven the categorization process
[50,51]. Furthermore, Dittrich et al. [52] found that pigeons mostly
pecked on the head of human figures in a people-present/people-absent
task and that removal of the heads impaired performance, while re-
moval of other parts of the human figures did not. These studies taken
together indicate to us that pigeons in our study might have formed a
representation of the humans who handle them and human body parts
in 3-D, and that this representation generalized to the new 2-D visual
stimuli presented during our experimental study even though it was not
required by the task.

4.3. Comparison of the avian and mammalian visual systems

In birds, the outer tectal layers constitute a two-dimensional map of
the visual field, as transmitted from the contralateral retina [53]. The
tectum is composed of 15 layers, with the tectal receptive field widths
gradually increasing from the superficial to the deep layers [54]. In
contrast to this retinotopic organization, the thalamic n. rotundus as the
next tectofugal entity is characterized by functional domains in which

different visual features such as movement, color, or luminance are
processed in parallel [55]. Thus, a precise topographic tectal code is
translated into a functionotopic thalamic code at the mesopallial/
diencephalic junction. This re-organization appears to be achieved by
five different retinotopically organized tectal cell populations that
project in parallel to different rotundal and subsequently also to en-
topallial domains [56,57]. Consequently, the entopallium is also con-
stituted by functional domains that possibly still possess visual topo-
graphy. The entopallium itself is subdivided into different layer-like
components that partly project to different associative telencephalic
regions of which the MVL is one [31]. Neurons of the MVL have been
found to code for simple object features like motion and color [32].

The mammalian extrageniculocortical pathway (colliculo-pulvino-
extrastriate system) is also constituted by parallel and functionally di-
verse thalamo-cortical projections, although not much is known how
the retinotopic collicular is translated to a functionotopic thalamic
system [58,59]. The major difference between the pigeon and the
mammalian visual system is the functional embedding of the two as-
cending visual pathways to the forebrain. The pigeons tectofugal
pathway (homologous to the mammalian extrageniculocortical
pathway) primarily processes detailed object vision [21], while this is
the domain of the mammalian geniculocortical pathway. Despite this
major difference, our results open the possibility that avian and mam-
malian visual pathways may process category-relevant object vision in
a similar way at a higher processing level. Let us first outline category
coding in the primate temporal cortex.

Studies in human subjects show that object classification is achieved
in about 150ms or less [60–62]. Such a fast processing time likely re-
quires feed-forward propagation to higher regions within the ventral
visual pathway [63]. Along this stream, receptive fields of neurons in-
crease in size and cells respond to more complex features [64,65],
which implies that lower stages of the ventral visual stream must re-
present a large dynamic range of stimulus features. In higher stages like
the ITC, only binary information of presence or absence of a stimulus
features need to be represented [66].

Recent studies in primates show that populations of ITC cells rapidly
converge towards a population vector that distinguishes between ca-
tegories of object features [67]. This process is extremely fast such that
populations of ITC-cells contain information about a certain object ca-
tegory just 50ms after arrival of the spike front in temporal cortex [68].
For example, in the study of [4] a linear classifier that was trained with
the data from the recorded cortical cells successfully categorizes all
stimuli with extremely high accuracy. Similar to our observation in
MVL, categorization performance also increased linearly with the
number of recorded neurons such that just 100 cells were sufficient to
successfully categorize all stimuli [4]. This is strong evidence that the
ventral visual pathway supports bottom-up visual object categorization
[69].

This finding resembles ours in pigeons and is also reminiscent to a
recent study in which a representational dissimilarity analysis of re-
corded neurons from the forebrain area NFL revealed population coding
for some low-level features like color and spatial frequency [33]. If
indeed neurons in the various visual associative areas of the avian
forebrain processed stimuli as a set of representational elements, stimuli
that share these elements could be perceived as perceptually coherent
and would define a category. Indeed, pigeons spontaneously group re-
lated stimuli, even when such grouping is unrelated to the prevailing
reward contingencies [70]. In categorization experiments, learning
takes place when category-specific elements acquire control over be-
havior. This is usually achieved by rewarding the animals for choosing
the category-relevant stimuli [71]. Based on an error-driven learning
rule in this supervised learning account, the critical elements of the
rewarded stimuli would acquire associative value, and thus the ability
to faithfully predict an outcome [72].

To summarize, we showed that a small neuronal population in a
visual association area of pigeons contains easily accessible information
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about the category “human”, whereas a lower visual area did not. Since
our experimental approach prevented reward contingencies from in-
fluencing the neuronal responses, it is likely that this population code
was mainly driven by feed-forward processes within the tectofugal
pathway. Thus, despite the important anatomical differences in the
organization of avian and mammalian forebrains, the encoding of ca-
tegorical information in associative neurons in pigeons might arise in a
similar fashion as in monkeys and humans [7,73].
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