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Abstract
Cetaceans are well known for their remarkable cognitive abilities including self-recognition, sound imitation and decision 
making. In other mammals, the prefrontal cortex (PFC) takes a key role in such cognitive feats. In cetaceans, however, a 
PFC could up to now not be discerned based on its usual topography. Classical in vivo methods like tract tracing are legally 
not possible to perform in Cetacea, leaving diffusion-weighted imaging (DWI) as the most viable alternative. This is the 
first investigation focussed on the identification of the cetacean PFC homologue. In our study, we applied the constrained 
spherical deconvolution (CSD) algorithm on 3 T DWI scans of three formalin-fixed brains of bottlenose dolphins (Tursiops 
truncatus) and compared the obtained results to human brains, using the same methodology. We first identified fibres related 
to the medio-dorsal thalamic nuclei (MD) and then seeded the obtained putative PFC in the dolphin as well as the known 
PFC in humans. Our results outlined the dolphin PFC in areas not previously studied, in the cranio-lateral, ectolateral and 
opercular gyri, and furthermore demonstrated a similar connectivity pattern between the human and dolphin PFC. The 
antero-lateral rotation of the PFC, like in other areas, might be the result of the telescoping process which occurred in these 
animals during evolution.
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En  Entolateral sulcus
Es  Ectolateral sulcus
La  Lateral sulcus
Sf  Sylvian fissure

Ss  Suprasylvian sulcus
AC  Anterior commissure
CC  Corpus callosum
Cl  Cingulate cortex
CSD  Constrained spherical deconvolution
DTI  Diffusion tensor imaging
DWI  Diffusion-weighted imaging
ES  Ectolateral gyrus
MC  Motor cortex
MDN  Medio-dorsal thalamic nucleus
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OT  Optic tract
PFC  Prefrontal cortex
SS  Suprasylvian gyrus
SSC  Somatosensory cortex
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Introduction

The bottlenose dolphin Tursiops truncatus (Montagu, 
1821) is a member of the Delphinidae family often 
kept in captivity, and consequently frequently studied. 
Individuals of this species may perform a large variety 
of complex cognitive tasks including sound imitation, 
understanding of human syntax, conceptual decision tak-
ing, understanding numerosity, and self-recognition (Kil-
ian et al. 2003; Kuczaj et al. 2009; Herman 2012; Yaman 
et al. 2012; Güntürkün 2014; Loth et al. 2022). Bottlenose 
dolphins demonstrated a capacity for complex planning 
and to devise composite hunting strategies (Tyack 2009; 
Herman 2012; Loth et al. 2022). In terrestrial mammals, 
these executive functions, elaborate behavioural actions, 
and the required working memory, are regulated by the 
prefrontal cortex (PFC; Fuster 2015), a neocortical area 
deemed responsible for higher brain functions in humans 
(Tranel et al. 2003; Butler and Hodos 2005; Kandel et al. 
2021). The PFC is the “cortex of the anterior pole of the 
brain” and defined as the major receiver of thalamic inputs 
from the medio-dorsal nucleus (MDN) (Petrides and Pan-
dya 2012; Fuster 2015). The MDN indeed projects also to 
the cingulate, insular premotor and parietal cortices (May 
and Forutan 2012). The identification of the PFC, as for 
other areas, is, therefore, based on composite anatomical 
landmarks and functional experiments that result in well-
accepted cortical maps of the human brain compared to the 
dolphin brain (Fig. 1a, b). The topographical concept of 
PFC has been applied to the brain of lab rodents, domes-
tic carnivores, sheep, rabbit, and primates, and validated 
functionally mostly through invasive studies (Rose and 
Woolsey 1948; Dinopoulos et al. 1985; Fuster 2015).

The brain of the bottlenose dolphin weighs approx. 
1600 g and has roughly 3700  cm2 of cortical surface, 
which are higher absolute values compared to the human 
brain (1300 g and 2400  cm2, respectively; Ridgway and 

Brondson 1984; Hofman 1985; Cozzi et al. 2017). The 
current neocortical maps for this species (See Chapter 6 
in Cozzi et al. 2017; Chapter 5 in Huggenberger et al. 
2019) derive almost entirely from early direct, intracorti-
cal evoked potential studies (Lende and Akdikmen 1968; 
Ladygina and Supin 1970, 1974; Lende and Welker 1972; 
Sokolov et al. 1972; for review, see Bullock and Gurevich 
1979; Supin et al. 2001; Cozzi et al. 2017) and retrograde 
tracing (Garey and Revishchin 1990). These pioneering 
studies allowed the tentative identification and prelimi-
nary topography of key functional areas, including motor 
(MC), somatosensory (SSC), primary and secondary audi-
tory (A1, A2), and primary and secondary visual (V1, V2) 
cortices (Fig. 1b, c). No further invasive studies were pub-
lished afterwards, due to growing ethical concerns and 
public awareness of animal rights. A large part of the dol-
phin cerebral cortex remains, therefore, unexplored, and 
several functions are still not mapped topographically.

The absence of an experimentally based topographical 
identification of the associative areas of the bottlenose dol-
phins (and other cetacean species) represents a potential 
critical point that limits neuroanatomical comparisons and 
potentially hampers even behavioural studies (for discus-
sion, see Chapter 10 in Cozzi et al. 2017). To date, the PFC 
has not been delineated in dolphins, and the topography of 
the rostral portion of the cortex in dolphins does not clearly 
match that of terrestrial mammals, including artiodactyls. 
What has been stated so far is that the antero-ventral (“fron-
tal” or “orbital”) part of the dolphin brain contains very large 
pyramidal cells, attributable to a putative motor cortex (see 
Kojima 1951; Hof et al. 2005). However, the variety and 
complexity of behaviours briefly described above suggest 
the existence of an area at least partially functionally homol-
ogous to the human PFC. To further support this hypothesis, 
here we emphasise that the thalamic nuclei (including the 
MDN) that in primates and rodents are usually related to 
associative cortical targets, are markedly developed in the 

Fig. 1  Neocortical brain map of a human in left view, b human (left 
hemisphere) and dolphin (right hemisphere) in dorsal view and c dol-
phin in left view. Dark blue, Motor cortex; light blue, premotor cor-
tex; Red, somatosensory cortex; light red, associative somatosensory 
cortex; yellow, V1; light yellow, associative visual cortex; dark green, 
A1; light green, associative auditory cortex; orange, PFC. Cr cruci-

ate sulcus, Cs central sulcus, En entolateral sulcus, ES ectosylvian 
gyrus, Es ectosylvian sulcus, La lateral sulcus, LG lateral gyrus, PRG 
precentral gyrus, PSG postcentral gyrus, Sf Sylvian fissure, SS supra-
sylvian gyrus, Ss suprasylvian sulcus. Neocortical maps adapted from 
Martin (2021; human) and Cozzi et al. (2017, dolphin)
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dolphin (Kruger 1959, 1966). A recent publication on the 
brains of the spotted and common dolphins (Berns et al. 
2015) described a thalamo-temporal pathway, based on the 
use of Diffusion Tensor Imaging (DTI). The striatal pro-
jections from the basal ganglia to the “frontal” lobes were 
investigated as well and a similar connectivity pattern to 
primates was found. Nevertheless, these findings were pre-
sented as a validation of the technique compared to the other 
data analysed and no further assumption about a putative 
PFC in cetaceans was present (Berns et al. 2015).

Invasive tracing studies in live dolphins are now ethically 
unacceptable, and similar considerations may prevent MR 
studies of healthy dolphins anaesthetised only for research 
purposes. Furthermore, many research and clinical MRI 
bores and coils may be unfit for the large head of the species. 
Consequently, DTI and other diffusion-weighted imaging 
(DWI) techniques on whole-fixed brains represent one of the 
few ethical and practical approaches to study connectivity 
patterns, but their applications to dolphins have been rare.

DTI was the first mathematical algorithmic method to 
encode DWI in a 3D tensor model with 6 degrees of free-
dom and perform tractography. Since the tensor model only 
represents the most dominant diffusion orientation, crossing 
fibres are not considered (Basser 1995). To overcome this 
known problem, a new algorithm, the Constrained Spherical 
Deconvolution (CSD), was developed. CSD is based on the 
acquisition of High Angular Resolution Diffusion Imaging 
(HARDI) and its model includes the possibility of multiple 
dominant diffusion orientations as in crossing fibres and, 
therefore, allows a better understanding of the organisation 
of fibre tracts (Tournier et al. 2007; Calamuneri et al. 2018).

CSD and other DWI methods are mathematical models 
that provide an interpretation of biological barriers within 
the brain. These methods are susceptible to artefacts, and the 
resulting data must be carefully interpreted. Tractography 
algorithms cannot distinguish between inputs and outputs, 
or rather, do not add a sense to the direction of the fibres, and 
as such, the words “terminated” (or similar) should be inter-
preted bearing in mind this caveat. Despite this limitation, 

DWI methods are currently the only non-invasive techniques 
available for studying structural brain connectivity (Schilling 
et al. 2020).

In the present study, we investigated whether the bottle-
nose dolphins possess an area with the topographical and 
connection characteristics of the human PFC, as detected by 
CSD. To this effect, we acquired post-mortem DW images 
on three adult bottlenose dolphin brains and performed 
tractography using CSD to investigate the fibre pathways 
involving the MDN. The results were compared with parallel 
investigations on the human brain.

Materials and methods

Origin of the specimens

Information on the bottlenose dolphin (n = 3) and human 
(n = 5) brains used in the present study are reported in 
Table 1.

Dolphin brains were extracted during routine necropsy 
performed at the Department of Comparative Biomedicine 
and Food Science (BCA) of the University of Padova (Italy) 
on specimens stranded on the Veneto coast. The brains were 
consequently fixed in phosphate buffered paraformaldehyde 
(4%) and stored in the Mediterranean marine mammal tissue 
bank (MMMTB, http:// www. marin emamm als. eu), located 
in BCA. The MMMTB is a CITES recognised (IT020) 
research centre, sponsored by and collaborating with the 
Italian Ministry of the Environment and the University of 
Padova. MMMTB collects and stores samples from wild or 
captive marine mammals whose samples or whole carcasses 
are delivered to BCA for post-mortem diagnostics.

Alive human brains were obtained from the Human Con-
nectom Project (HCP) database (https:// ida. loni. usc. edu/ 
login. jsp). HCP is supported by the National Institute of 
Dental and Craniofacial Research (NIDCR), the National 
Institute of Mental Health (NIMH) and the National Institute 
of Neurological Disorders and Stroke (NINDS). The HCP is 

Table 1  Origin of specimens

The age class was known in the captive animals and estimated in the wild due to its total length (Jefferson et al. 2015)

Species ID Sex Age Origin Cause of death Fixation interval Imaging interval

T. truncatus # 4 F Adult Marine theme park Drowning  < 12 h 21 yr
# 9 F Marine theme park Septicaemia  < 12 h 20 yr
# 457 M Wild NA  < 12 h 2 yr

H. sapiens MGH 1007 M Adult Not applicable NA NA NA
MGH 1010 F
MGH 1016 M
MGH 1019 F
MGH 1031 M

http://www.marinemammals.eu
https://ida.loni.usc.edu/login.jsp
https://ida.loni.usc.edu/login.jsp
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the result of efforts of co-investigators from the University of 
Southern California, Martinos Center for Biomedical Imag-
ing at Massachusetts General Hospital (MGH), Washington 
University, and the University of Minnesota.

ID 9 was cut in the mid-sagittal plane for other research 
purposes. Anyway, both hemispheres were scanned together. 
In this case, any fibre going to the contralateral hemisphere 
was considering false.

Data acquisition

Dolphins

Brain scans were acquired using a 3 T MRI human whole 
body system (Achieva 3  T X, Philips) and a 32-chan-
nel head coil. A 3D fast acquisition with Fast Field 
Echo Imaging (FFE) was used to obtain high-resolution 
T2-weighted structural images. The parameters were: TFE 
factor = 105; field of view (FOV) = 150.0 × 200.0 × 150.
0  mm3; repetition time/echo time (TR/TE) = 8.2/3.8 ms; 
matrix size (MTX) = 152 × 201; 150 slices with a voxel 
size of 1.0 × 1.0 × 1.0   mm3. Acquisition time per brain 
was 6.26 min. DW images were obtained using an Echo 
Planar Imaging (EPI) series with following param-
eters: EPI factor of 41; FOV = 224 × 168 × 150  mm3; TR/
TE = 23,200/88 ms; MTX = 112 × 82; 75 slices with a voxel 
size of 2.0 × 2.0 × 2.0   mm3. 60 gradient directions with 
b = 3500 s/mm2 and 1 non-diffusion-weighted image (b = 0 s/
mm2) were acquired. Acquisition time per brain was 24 min 
and 21 s. An additional DW image with 2 gradient direction 
(b = 3500 s/mm2) and 2 non-diffusion-weighted images were 
acquired in the opposite phase encoding direction for the 
subsequent motion/distortion correction. The protocol used 
at the beginning was specific for DWI image acquisition in 
live humans. Accordingly, various sequences were tested 
at the beginning by changing the b values and resolution to 
obtain the best SNR under those conditions. Considering all 
the three dolphins, the SNR, calculated as the mean signal 
of each gradient in the raw data, ranged for the b = 0 s/mm2 
from 36.6 to 40 and for the b = 3500 s/mm2 from 13 to 16.

Humans

Human scans were acquired using a customised Siemens 
3 T Connectom scanner, which is a modified 3 T Skyra 
system (MAGNETOM Skyra Siemens Healthcare) with 
64-channel tight-fitting brain array coil. A 3D MPRAGE 
sequence was used to obtain T1w structural images with 
the following parameters: FOV 256 × 256  mm; TR/TE 
2530/1.15 ms; voxel size of 1.0 × 1.0 × 1.0  mm3. Acquisi-
tion time per brain was 6.02 min. Additional T2w struc-
tural images were acquired with 3D T2-SPACE sequence 
with the following parameters: FOV 224 × 224 mm; TR/TE 

3200/561 ms; voxel size of 0.7 × 0.7 × 0.7  mm3. Acquisi-
tion time per brain was 6.48 min. DW images were obtained 
using a Spin-echo EPI sequence with: FOV = 210 × 210 mm; 
TR/TE = 8800/57 ms; MTX = 140 × 140; 96 slices with a 
voxel size of 1.5 × 1.5 × 1.5  mm3. 64 gradient directions 
with b = 1000 s/mm2, 64 gradient directions with b = 3000 s/
mm2, 128 gradient directions with b = 5000 s/mm2 and 2 
sets of 128 gradient directions with b = 10,000 s/mm2 were 
acquired. Every 14 volumes, a b = 0 image was collected, 
and 1 non-diffusion-weighted image (b = 0 s/mm2) was 
acquired. Acquisition time per brain was 89 min.

More information on the human brain scans can be found 
at the following link: https:// www. human conne ctome. org/ 
study/ hcp- young- adult/ docum ent/ mgh- adult- diffu sion- data- 
acqui sition- detai ls/.

Data processing

Dolphins

Data were processed through FSL (https:// fsl. fmrib. ox. 
ac. uk/ fsl/ fslwi ki; Smith et al. 2004; Woolrich et al. 2009; 
Jenkinson et al. 2012) and MRtirx3 (https:// www. mrtrix. 
org/; Tournier et al. 2012) toolboxes. Briefly, images were 
denoised (Veraart et al. 2015, 2016), corrected from Gibb’s 
ringing artefacts (Kellner et al. 2015), corrected for EPI-
distortion (Holland et al. 2010), b0-field inhomogeneity 
(Andersson et al. 2003; Smith et al. 2004), Eddy-current 
and movement (Andersson and Sotiropoulos 2016). Subse-
quently, the dhollander algorithm was applied to compute 
different response functions for the white matter (WM, 
anisotropic), cerebrospinal fluid and grey matter (CSF and 
GM, both isotropic). Finally, the fibre orientation distribu-
tion (FOD) was calculated before the elaboration of the trac-
tography (Dhollander et al. 2016a, b, 2017; Tournier et al. 
2019). Each brain was then investigated individually.

Humans

Preprocessed data of human brains were already present 
in the HCP files, but further steps were added in order to 
create a template atlas, averaging all five subjects. Images 
were corrected form bias field and group DWI intensity nor-
malisation was performed. In these data, there were 4 shells, 
therefore, the dhollander algorithm was used to estimate dif-
ferent response functions and then average them to calculate 
the FOD. Once all subjects’ FOD were complete, we cre-
ated a population template, a template mask and warping 
all the FOD images to the template space (for reference, see 
Tournier et al. 2019).

https://www.humanconnectome.org/study/hcp-young-adult/document/mgh-adult-diffusion-data-acquisition-details/
https://www.humanconnectome.org/study/hcp-young-adult/document/mgh-adult-diffusion-data-acquisition-details/
https://www.humanconnectome.org/study/hcp-young-adult/document/mgh-adult-diffusion-data-acquisition-details/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.mrtrix.org/
https://www.mrtrix.org/
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Tractography

Throughout the following, the procedure was applied to both 
right and left hemispheres. In dolphins, the MDN mask was 
manually drawn using the ITK-SNAP software (Yushkevich 
et al. 2016; www. itksn ap. org; version 3.8.0) following the 
topographical location described by Kruger (1959) and Mor-
gane and Jacobs (1972). The thalamic subdivision is quite 
evident in the histological data if compared to our MRI data. 
We first identified the thalamic topographic position based 
on the histology, and then drew the areas. Since the slides 
did not include all the thickness of the thalamus, we tried to 
reconstruct the missing space following its shape (Fig. 2). 

The final mask was intentionally slightly eroded to avoid the 
generation of erroneous extra fibres. Since there is no map 
of the PFC location in Cetacea, a PFC area was first created, 
based from the tracts originating from the MDN. To verify 
that the tracts were not artefactual, we restricted the tracking 
using the designated PFC as the seed image and reaching the 
MDN nucleus, thus restraining the fibres to the bundle only 
connecting one with the other.

In the human, MDN and PFC were manually drawn with 
ITK-SNAP, based on the currently available templates and 
atlases (Tamraz and Comair 2000; Cho 2010; Ding et al. 
2016). For both dolphin and human brains, fibre tracking 
was performed through a deterministic algorithm based on 

Fig. 2  Representation of the MDN mask based on the panels 
descripted by Kruger (1959) and Morgane and Jacobs (1972). The 
directions from a to c are rostro-caudal with a 3D visualisation of 

the section and the whole mask at the correspondent plane; a section 
taken based on panel number 6; b section taken based on panel num-
ber 7; c section taken based on panel number 3

http://www.itksnap.org
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CSD, with the FOD file as input and the following parame-
ters: FA threshold 0.1 for dolphin brains (as they were fixed) 
and 0.2 for human brains (since the subjects were alive), 
step size 0.1 mm, default angle threshold 60°, and default 
streamline count (5000).

Results

Seeding point: MDN nuclei

In the dolphin brains, the main fibre bundles exiting the 
MDN were directed cranially running below the cruci-
ate sulcus (Cr) towards the ventro-cranial pole, passing 
between the Putamen (PU) and caudate nucleus (CA). 
Other consistent fibre bundles went dorsally following 
the internal capsule and terminated in i) the supralimbic 
cortex around the entolateral sulcus (En), the lateral sulcus 
(La), and the suprasylvian sulcus (Ss); then ii) laterally 

in the temporal lobes around the ectolateral sulcus (Es). 
Some tracts ran caudally to the Edinger–Westphal nucleus 
(EW), the Interstitial Nucleus of Cajal (INC) and the ellip-
tic nucleus (NE), then moved ventrally towards the crus 
cerebri (Fig. 2a). Projections from the MDN were also 
commonly distributed within the thalamus and then ran to 
other brain areas. Few aberrant fibres passed through the 
superior colliculi (SC) (Fig. 3a).

In the human brain, fibres ran to the PFC following the 
anterior thalamic peduncle, then went laterally to the tem-
poral lobe following the inferior thalamic peduncle. Some 
of the latter fibres split from the inferior thalamic bundle 
to join the optic radiation directed towards the parietal 
lobe. We also noted fibres that reached the CC to spread 
in the contralateral hemisphere (Fig. 3b).

Thanks to our previous results, we were able to estimate 
a presumptive frontal region based on the extension of the 
fibres on the WM tracts (Fig. 4).

Fig. 3  Prefrontal pathways in the dolphin and human brains. a Tracts 
generated from seeding the MDN (blue shape) in dolphin. b Tracts 
generated from seeding MDN (blue shape) in human. CC corpus 

callosum, En entolateral sulcus, Es ectolateral sulcus, ES ectolateral 
gyrus, La lateral sulcus, LG lateral gyrus, Sf sylvian fissure, Ss supra-
sylvian sulcus, SS suprasylvian gyrus. Red scale bar = 5 cm
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Seeding point: acquired PFC

Seeding the putative PFC resulted in the presence of sev-
eral ipsilateral U-shaped fibres within the area. Other fibre 
tracts were oriented towards the basal ganglia and the cin-
gulate cortex (CI). Other bundles continued through the 
MDN to end in the pons. A consistent number of fibres 
joined the superior longitudinal fasciculus (SLF) directed 
to the temporal lobe (Es, Ss) while others arose to En 
and La (Fig. 5a). Finally, some tracts reached the CC and 
crossed contralaterally.

In the human brain, ipsilateral fibres created from the 
PFC joined the inferior fronto-occipital fasciculus and 
reached the V1. Other fibres joined the fornix, then ran 
caudally towards the MDN, the CI. Some tracts were 
directed to the temporal lobe apparently through the SLF. 
Fibres directed towards the mesencephalon reached the 
periaqueductal grey and the red nucleus in the tegmentum 
(Fig. 5b). Finally, consistent fibre bundles moved to the 
CC and then crossed to the contralateral hemisphere.

Fig. 4  Putative PFC (red mask) 
based on previous projections 
from the MD (blue mask). a 
Frontal view; b dorsal view

Fig. 5  Prefrontal pathways in the dolphin and human brains. a Tracts 
generated from seeding the PFC (red shape) in dolphin. b Tracts gen-
erated from seeding PFC (red shape) in human. The MDN is repre-
sented in blue. CA caudate nucleus, CC corpus callosum, CI cingu-

lum, En entolateral sulcus, Es ectolateral sulcus, ES ectolateral gyrus, 
La lateral sulcus, LG lateral gyrus, PU putamen, SLF superior longi-
tudinal fasciculus, Ss suprasylvian sulcus, SS suprasylvian gyrus. Red 
scale bar = 5 cm



1970 Brain Structure and Function (2023) 228:1963–1976

1 3

Specifically constrained thalamo‑cortical 
connections

To delimit the fibres previously generated singularly from 
the MDN nuclei or from the presumptive PFC, we also 
selectively constrained the tracking between these two 
regions.

In general, these fibres were fewer and more limited. In 
the dolphin, cortically seeded bundles passed below the Cr 
and between the basal ganglia to reach the MDN. Other 
streamlines ran laterally to the temporal lobe (Ss, Es), and 
very few fibres continued dorsally to the ENs and LAs. 
Finally, some fibre bundles were directed caudally to the 
red nucleus and the elliptic nucleus (Fig. 6).

Prefrontal pathways in the human brain between PFC 
and MDN also crossed through the CC and reached the 
temporal lobe of the contralateral hemisphere through the 
inferior thalamic peduncle. Few fibres detached from the 
inferior thalamic peduncle and continued caudally until 
the VC (Fig. 7).

Discussion

A precise identification of the topography and connectivity 
of the PFC (or its homologue) in dolphins represents a con-
sistent step forward towards the understanding of their brain 
architecture and the neural basis for some of the complex 
behaviours of the species. To the best of our knowledge, 
DWI technique is currently one of the very few technically 
feasible and ethically acceptable approaches to identify the 
PFC in dolphins, and potentially other large ex-vivo brains.

In the present study, we performed CSD-based tractog-
raphy and aimed at identifying fibre tracts that connect 
selected thalamic nucleus to their related cortical targets/
origin. We then compared the data with those obtained 
in the human brain. Since the human PFC is one of the 
key areas assigned to higher brain functions (Tranel et al. 
2003; Butler and Hodos 2005; Kandel et al. 2021), we 
searched for an area in the dolphin brain with the same 
characteristic connections.

Fig. 6  Constrained tractography between the putative found PFC (red 
shape) and the MDN (blue shape). CA caudate nucleus, Cr cruciate 
sulcus, En entolateral sulcus, Es ectolateral sulcus, ES ectolateral 

gyrus, La lateral sulcus, LG lateral gyrus, PU putamen, Sf sylvian fis-
sure, Ss suprasylvian sulcus, SS suprasylvian gyrus

Fig. 7  Constrained tractography 
between the putative found PFC 
(red shape) and the MDN (blue 
shape). CC corpus callosum
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CSD is a HARDI algorithm of DWI that, within the 
limits of human clinical MRI parameters, can reconstruct 
crossing fibres within a voxel, thus giving a more plausible 
biological result (Arrigo et al. 2016; Jeurissen et al. 2017). 
The algorithm can be applied and extended also to fixed 
brains, much like with DTI (D’Arceuil and de Crespigny 
2007; Rane and Duong 2011; Gerussi et al. 2022). Classical 
retrograde and anterograde tract-tracing remains the gold 
standard methodology to accurately study brain connections. 
However, the technique was seldom performed in cetacean 
brains, and likely will not be in the future because of the 
ethical constraints briefly outlined in the Introduction. In 
this context, opportunistic fixed-brain DWI (and its various 
algorithmic variations), therefore, constitutes an adequate 
method to investigate brain connections in these mammals, 
even considering its biases and limits to interpretation 
(Jeurissen et al. 2017; Schilling et al. 2020). Fixation pro-
duces microstructural changes such as dehydration or tissue 
degeneration, which in turn may alter some MRI parameters 
including SNR, FA and apparent diffusion coefficient (ADC) 
(D’Arceuil and de Crespigny 2007; Rane and Duong 2011). 
Therefore, the obtained results must consider all the limita-
tions of DWI in general and DWI applied to fixed tissues.

Tracing and tractography in dolphins and porpoises

Literature on evoked potential placed the bottlenose dolphin 
V1/V2 around En in the LG, extending rostro-caudally and 
with the La as its lateral boundary. A1/A2 develops from 
there along the SS, reaching the Ss with a rostro-caudal 
direction (for review see Supin et al. 2001). According to 
the literature, the Cr separates rostrally the medial SSC from 
the lateral MC. Other reports that used tracing in the harbour 
porpoise (Phocoena phocoena) established the existence of 
projections from the parvocellular part of the MGN to the 
suprasylvian and ectosylvian gyri (Krashnoshchekova and 
Figurina 1980; Voronov et al. 1985), and the involvement of 
the LGN as target of the optic nerve. Evoked potentials were 
used also for track-tracing-based injections in various areas 
of the neocortex (LG, the SS, ES, temporal and orbital) of 

the harbour porpoise (Revishchin and Garey 1990). Overall, 
the data obtained showed that medial thalamic projections 
progressively crossed to a lateral cortical position, therefore, 
ending contralaterally to their origin (see Revishchin and 
Garey 1990, Fig. 13). However, no tracing study was ever 
performed on a putative PFC.

A recent DTI study described for the first time the exist-
ence of a direct auditory pathway from IC to MGN to the 
temporal lobe near the Sylvian fissure in the common (Del-
phinus delphis) and pantropical spotted dolphin (Stenella 
attenuata), and an overlap of thalamic visual and auditory 
pathways (Berns et al. 2015). Such direct pathways, often 
hypothesised, but never demonstrated before, suggest a 
direct and profound interconnection of the dolphin visual 
and auditory system. Nevertheless, given the extremely 
limited data concerning the functional auditory region in 
cetaceans, it should be considered a still partially unsolved 
scientific question.

Topography and characterisation of the PFC 
in the human and dolphin brain

The human PFC can be divided into four functional areas: 
orbitofrontal cortex (OFC), dorsolateral PFC (dlPFC), dor-
somedial PFC (dmPFC) and ventromedial PFC (vmPFC) 
(Kolb 2015). The caudolateral boundaries of the PFC 
roughly correspond to the cranial part of the precentral sul-
cus (premotor cortex) and medially to the cingulate cortex. 
The Brodmann areas overlapping the human PFC are: BA8-
14, 24, 25, 32, 44–47 (Murray et al. 2017). These are marked 
by notable cytoarchitectural differences that determine their 
boundaries (Brodmann’s 2006; Petrides and Pandya 2012). 
Although the frontal lobe possess its own cytoarchitectural 
peculiarity (Hof et al.  2005), there are no such character-
istic differences in the bottlenose dolphin, and other ceta-
ceans in general (Kern et al. 2011; van Kann et al. 2017). 
We started by identifying topographical landmarks that may 
characterise comparatively the dolphin PFC (see orange area 
in the Fig. 8) and then proceeded with CSD tractography. 
The average mass of the brain in the bottlenose dolphin is 

Fig. 8  Approximate PFC 
representation (orange area) 
in human (A) and dolphin (B) 
brain. For abbreviations, see the 
list. Red scale bar = 5 cm
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1.550 g (Huggenberger et al. 2019), vs. the average value 
of 1300–1400 g for the human (Miller and Corsellis 1977) 
must be taken in account. Without discussing the body and 
brain weight correlation, or the Encephalization Quotient1 
(Jerison 1973; for discussion of its application to cetaceans 
see Cozzi et al. 2016), we emphasise that the position of the 
area occupied by the PFC, based on topographically equiva-
lent landmarks, appears more lateral in the dolphin brain 
comparatively to man, even considering the different brain 
shape and dimensions.

Prefrontal pathways

In the human DWI scans, seeding the human MDN (Fig. 2b) 
resulted in fibres that reached most of the PFC through the 
anterior thalamic peduncle, while some other fibres joined 
the inferior thalamic peduncle and were then oriented 
towards the somatosensory association area in the parietal 
lobe and V1. Our results were consistent with those found 
by Grodd et al. (2020). When the same method was applied 
to the brains of the bottlenose dolphins, the resulting fibres 
joined the internal capsule, passed between the basal ganglia 
towards the ventro-cranial pole and ended ventrally to the 
Cr. Other fibres were directed towards either the LGN or the 
MGN, going through the internal capsule and terminating 
in the parietal lobe. We also noted that some fibres were 
directed caudally, possibly to merge in post-thalamic tectal 
pathways. A putative PFC could be identified in the bottle-
nose brain by mapping fibres that reached the non-parietal 
neocortex (Fig. 8). The projections arising from this putative 
PFC then continued (a) within the PFC itself; (b) moved to 
the contralateral PFC through the CC; (c) to the CI; (d) to 
the pons passing between the basal ganglia and MDN; or (e) 
to the temporal lobe following the SLF. The connectivity 
pattern detected in the bottlenose brain was in fact similar 
to that found in the human brain.

To check whether these fibres were not just artefactual, 
we first seeded the MDN to establish where the fibres were 
going. Then we seeded the designated area to see if some 
of the fibres projected independently back to the MDN. 
We noticed that some fibres again connected the PFC with 
the MDN, but other bundles were oriented towards differ-
ent areas. The PFC is a multimodal association area which 
receives and sends inputs to other brain regions, and—to this 
effect—our results were consistent with what reported in the 
literature (Fuster 2015). We finally constrained the seed-
ing between the two areas to qualitatively see the amount 
of fibres only related to these seeds, and exclude other 

unspecific bundles. We found a more marked asymmetry in 
the dolphin brains compared to human brains (Figs. 6 and 7), 
but given the scope of our study and its qualitative approach, 
we did not emphasise this aspect.

The acquisition parameters used to scan the live human 
brains (referred to the HCP) were evidently better than those 
of the (dead) dolphin brains. However, we detected no sub-
stantial loss of signal in the formalin-fixed dolphin brains, so 
that identification of a putative PFC area in their brain gave 
results that were largely comparable to the human. No for-
mer tracking or injection studies based on evoked potential 
reported a functional identification of a putative PFC in dol-
phin, hence, this is the first report of a putative PFC in this 
species, and, to the best of our knowledge, in all cetaceans. 
Its boundaries start in the orbital lobe, extend laterally in the 
cranial ES and reach the cranial opercular lobe. However, 
additional fibres were connected to areas placed below the 
SSC and MC cortices, in which pyramidal neurons were 
previously found (Manger 2006).

According to the concept of the “initial brain” (for refer-
ence see Glezer et al. 1988, Fig. 7) modern mammals still 
retain some key topographical features already present in the 
brains of their early ancestors, notwithstanding the divergent 
evolutionary path of the taxa. The enlarged human neocortex 
contains far more and varied cortical modules than in pri-
mordial mammals. The cetacean brain obviously followed 
a different evolutionary route since the brain mantle greatly 
expanded to the uttermost known limits for mammals in 
terms of relative cortical size, while the cytoarchitecture is 
poorly differentiated and mostly homogeneous in the neo-
cortex (Cozzi et al. 2017).

In the human brain, the development of the PFC dis-
placed all the areas caudally, thus modifying the primeval 
topographical scheme (Fig. 9). In cetaceans, the progres-
sive evolution to life in the water caused a wide range of 
body structure modifications. In the head specifically, the 
growth of the melon, the telescoping process, and the nasal 
shift which caused the change of the cranial axes and shape, 
might have prevailed over the longitudinal development of 
the brain (Miller 1923; Cozzi et al. 2017; Roston and Roth 
2019). Consequently, the brain folded around the insula (see 
dotted arrows in Fig. 9) and expanded more laterally: what 
in terrestrial mammals is “caudal” becomes “dorsal” in the 
dolphin and so forth (Morgane and Jacobs 1972). Concomi-
tant space limits within the cerebral cavity prompted a strik-
ing cortical gyrification and induced the topographical shift 
of neocortical areas. Our data based on CSD tractography 
confirmed that the (evolutionary) process that modified the 
cetacean brain was compatible with the persistence of a very 
large and richly connected PFC area.

The PFC of terrestrial mammals, and the correspondent 
areas in birds, are highly innervated by dopaminergic neu-
rons (Sawaguchi and Goldman-Rakic 1991; Gaspar et al. 

1 EQ [EQ =  Ei / 0.12 ×  P2/3; E.i = mean brain weight, P = mean body 
weight] is 3.79 in the bottlenose dolphin vs. 6.62 in man, according to 
Huggenberger et al. (2019)
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1992; Güntürkün 2005). Based on this neurochemical con-
cept, further studies are needed to investigate the actual 
presence of dopaminergic neurons in the PFC of dolphins. 
This is particularly important in the fronto-ventral area, 
where one should not expect to find an associative cortex 
(Manger 2006, referring to Kojima 1951), and in the lat-
eral (opercular) area. Additional functional MRI (fMRI) or 
recently developed functional near-infrared spectroscopy 
(fNIRS) techniques (Scholkmann et al. 2014) might also 
become useful for the study of brain functions through the 
proxy of increased blood flow during local stimulation, 
very similar to blood-oxygen-level-dependent contrast in 
fMRI. A composite multidisciplinary approach may even-
tually shed light on the unmapped cortical fields of these 
mammals with remarkable cognitive abilities.
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