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Abstract

Intelligence is highly heritable. Genome-wide association studies (GWAS) have shown

that thousands of alleles contribute to variation in intelligence with small effect sizes.

Polygenic scores (PGS), which combine these effects into one genetic summary mea-

sure, are increasingly used to investigate polygenic effects in independent samples.

Whereas PGS explain a considerable amount of variance in intelligence, it is largely

unknown how brain structure and function mediate this relationship. Here, we show

that individuals with higher PGS for educational attainment and intelligence had

higher scores on cognitive tests, larger surface area, and more efficient fiber connec-

tivity derived by graph theory. Fiber network efficiency as well as the surface of brain

areas partly located in parieto-frontal regions were found to mediate the relationship

between PGS and cognitive performance. These findings are a crucial step forward in

decoding the neurogenetic underpinnings of intelligence, as they identify specific

regional networks that link polygenic predisposition to intelligence.
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1 | INTRODUCTION

Intelligence is a general mental capability that involves the ability to

reason, plan, solve problems, and learn from experience (Deary

et al., 2021). General intelligence, or g, is one of the most intensely

studied psychological phenotypes for its high stability across the life

course (Deary, 2014) and its high predictive value for educational suc-

cess (Deary et al., 2007) and health outcomes (Calvin et al., 2017).

Despite intelligence's high relevance in everyday life, investigating its

neurogenetic underpinnings showed to be surprisingly challenging

(Plomin & von Stumm, 2018).

Intelligence is a highly heritable trait (Plomin & von

Stumm, 2018), with about 50% of the variance accounted for by

genetic factors. Genome-wide association studies (GWAS), which test

the association between single nucleotide polymorphisms (SNPs) and

a phenotype, showed that intelligence is highly polygenic, with thou-

sands of alleles across the genome contributing with small effect sizes

(Savage et al., 2018). One way forward in accounting for this highly

polygenic architecture is to combine the effects of different SNPs

across the whole genome into one summary measure, so-called poly-

genic scores (PGS) (Choi et al., 2020). PGS are determined by comput-

ing the sum of allelic effects for a specific phenotype such as

intelligence over the whole genome and weighting them with an

effect size estimate obtained from GWAS. Importantly, PGS use the

statistical power of well-powered GWAS of discovery samples to be

applied robustly in smaller target samples (Dima & Breen, 2015;

Dudbridge, 2013). In the case of intelligence, PGS derived from one of

the largest GWAS to date (Savage et al., 2018) explain up to 5.2% of

variance in general intelligence. For educational attainment—highly

correlated to intelligence and more readily available—larger GWAS

could be realized, with resulting PGS that explain up to 11% of the

variance in educational attainment (Lee et al., 2018), and 7% of vari-

ance in intelligence (Plomin & von Stumm, 2018).

In addition, PGS can be leveraged to map the pathway from

genetic disposition to phenotype. Whereas it is known that intelli-

gence is influenced by brain structure and function as well as network

efficiency (Barbey, 2018; Deary et al., 2010), a functional understand-

ing of which specific brain parameters mediate the link between

genetic variation and intelligence is missing. Several brain properties

are related to intelligence, including brain volume, surface area, and

cortical thickness (Choi et al., 2008; McDaniel, 2005; Narr

et al., 2007; Pietschnig et al., 2015). Importantly, intelligence is not

tied to the properties of one single brain area, but to a wide network

of brain areas spread across the whole cortex. Here, a network mainly

comprising the dorsolateral prefrontal cortex, the parietal lobe, the

anterior cingulate cortex, the temporal lobe, and the occipital lobe

seems to be central for cognitive performance, as proposed by the

Parieto-Frontal Integration Theory of intelligence (P-FIT) (Jung &

Haier, 2007). The theory assumes that all of these P-FIT areas, even

though they were identified independently of each other, are likely to

have strong interconnections and form an extensive brain network.

Recent studies and models focusing on connectivity-based

approaches indicate that there may be brain areas whose structural

and functional properties are not related to intelligence, while their

connectivity patterns are (Barbey, 2018; Fraenz et al., 2021). Previous

research, in which the connectivity between brain regions was quanti-

fied via diffusion-weighted imaging (DWI) and graph theoretical

approaches, showed that the brain's global efficiency as well as the

nodal efficiency of brain areas from the P-FIT network and beyond

are associated with intelligence (Fischer et al., 2014; Kim et al., 2016;

Li et al., 2009; Ma et al., 2017; Pineda-Pardo et al., 2016; Wen

et al., 2011; Wiseman et al., 2018). The largest study investigating

associations of intelligence and structural brain properties found asso-

ciations of β = .276 for total brain volume and of β = .0246 for white

matter volume (Cox et al., 2019). On a regional level, associations with

cortical volume of frontal areas were largest.

In addition to structural connectivity, graph theory can also be

used in combination with data from resting-state fMRI in order to

study the brain's functional connectivity (Fox & Raichle, 2007). There

is evidence that general intelligence is positively correlated with func-

tional global efficiency (van den Heuvel et al., 2009) and the nodal

efficiency of areas belonging to the P-FIT network. However, subse-

quent studies could not replicate these associations (Hilger

et al., 2017a, 2017b; Kruschwitz et al., 2018). Thus, structural proper-

ties of the P-FIT network seem to show a more reliable correlation to

intelligence than functional properties.

Macrostructural properties of specific brain areas and the struc-

tural efficiency of the human connectome represent likely candidates

for mediating the effects of genetic variation on general intelligence.

Several GWAS reporting genetic correlations between brain proper-

ties and intelligence, that is, overlapping genetic variants being associ-

ated with both phenotypes, support this notion (Cheng et al., 2020;

Feng et al., 2020; Ge et al., 2019; Grasby et al., 2020; Lee et al., 2019;

Zhao, Li, et al., 2021; Zhao, Zhang, et al., 2021). In a complementary

approach, studies demonstrated associations between PGS for educa-

tional attainment or general intelligence and brain properties (Jansen

et al., 2019; Knol et al., 2019; Loughnan et al., 2021). However, medi-

ation analyses that measure polygenic disposition, brain properties

(putative mediator) and intelligence (outcome) in the same sample are

rare. By doing so, one can directly analyze the extent to which the

association between PGS and intelligence is explained via variation in

brain structure and function. Three studies to date have investigated

the mediation effect on the macrostructural level (Elliott et al., 2019;

Lett et al., 2020; Mitchell et al., 2020). Elliott et al. (2019) analyzed

the potential mediation effect of total brain volume on the relation-

ship between PGS for educational attainment and cognitive perfor-

mance. They found that participants with larger brains and with

higher PGS performed better on cognitive tests. PGS were also posi-

tively associated with brain size. However, there was no clear overall

mediation effect of brain volume. Since general intelligence is associ-

ated with specific regions in the brain, subsequent studies focused on

region-specific mediation effects of cortical thickness and surface

area. Lett et al. (2020) employed PGS for general intelligence and

found that the association between PGS and general intelligence was

partially mediated by surface area and cortical thickness in prefrontal

regions, anterior cingulate, insula, and medial temporal cortex. It is
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noteworthy that some of these regions are part of the P-FIT network.

Results were consistent across two independent samples, indicating

that macrostructural properties of specific areas, partly belonging to

the P-FIT network, may indeed play a crucial role with regard to the

link between genetic variation and general intelligence. Another study

by Mitchell et al. (2020), which employed PGS for educational attain-

ment, reported similar findings. They observed that surface area and

cortical thickness of specific cortical regions partially mediated the

effects of PGS on cognitive test performance. These regions were the

fusiform gyrus, entorhinal cortex, banks of the superior temporal sul-

cus, the inferior frontal gyrus, and the medial orbital frontal gyrus.

To summarize, there is evidence that specific gray matter macro-

structural properties of brain areas from the P-FIT network represent

likely candidates to explain the link between genetic variation and

intelligence. What is missing, however, is a systems view taking into

account white matter connectivity as well as functional network prop-

erties. Our study aimed to fill this crucial gap in the literature by using

a multilevel deep phenotyping approach, including an integrated anal-

ysis of behavioral and neuroimaging phenotypes. We investigated the

effects of two different PGS on general intelligence: PGS for educa-

tional attainment (Lee et al., 2018) and PGS for general intelligence

(Savage et al., 2018). We tested the mediating role of surface area,

cortical thickness, white matter fiber network efficiency, and func-

tional network efficiency on the level of the whole brain as well as for

specific brain areas. Thus, this study presents the first multimodal

mediation analysis that gives brain region-specific insight into the

putative links between genetics and general intelligence.

2 | METHODS

2.1 | Participants

Since this is the first study investigating the mediation effect of net-

work connectivity on the relationship between PGS and intelligence,

we used effect sizes from previous studies investigating the correla-

tion between network connectivity and intelligence (Genç

et al., 2019). Thus, an a-priori test was performed using G*Power to

estimate the needed number of participants. The analysis was based

on a linear multiple regression analysis with a small effect size

(f2 = .04, α = .05, two-tailed, power= 0.95, number of predictors= 6).

The analysis computed a total sample size of 528.

Our sample consisted of 557 adults, who reported to be free from

past or present neurological and/or psychological conditions. The

mean age was 27.33 years (SD = 9.43; range = 18–75), we tested

283 men (mean age = 27.1, SD = 9.86) and 274 women (mean

age = 26.94, SD = 8.96). Participants were mostly university students

(mean years of education = 17.4, SD = 3.12), who participated in

exchange for course credit or financial compensation. The study was

approved by the local ethics committee of the Faculty of Psychology

at Ruhr-University Bochum (Nr. 165). All participants gave written

informed consent and were treated according to the Declaration of

Helsinki. The final dataset (see 2.3) included 523 participants aged

from 18 to 75 (M = 27.1, SD = 9.08, 266 women). The data is part of

a large-sample study on the neural correlates of intelligence, personal-

ity, and motivation. Hence, it has been used in other publications

(Genç et al., 2018; Genç et al., 2019; Genç et al., 2021).

2.2 | General intelligence testing: I-S-T 2000 R

Since participants were native German speakers, general intelligence

was assessed using the basic module of the “Intelligenz-Struktur-Test
2000 R" (I-S-T 2000 R), a well-established German intelligence test bat-

tery (Beauducel et al., 2001; Liepmann et al., 2007). The test was con-

ducted in a quiet and well-lit room. The I-S-T 2000 R comprises various

types of mental test items to measure multiple facets of general intelli-

gence and is largely comparable to the internationally established

Wechsler Adult Intelligence Scale (WAIS IV) (Erdodi et al., 2017). The

basic module contains 180 items assessing three sub-factettes of gen-

eral intelligence, namely verbal, numeric, and figural reasoning (Genç

et al., 2021). Verbal, numeric, and figural scores are measured by three

reasoning tasks with 20 items each. Examples for task-assessing verbal

abilities are sentence completion, analogies or commonalities. Numeri-

cal abilities are assessed by, for example, items on arithmetic problems

and digit span tasks. Figural abilities are assessed by, for example, tasks

where participants have to assemble or rotate figures mentally, match

dice and solve matrix reasoning tasks. The assessment lasts about

90 minutes. The current norming sample comprises 5800 participants

for the basic module (age 15–60, both sexes are represented equally).

The reliability (Cronbach's α) of general mental ability is α = .96. For

every participant a sum score across all 180 items was computed and

used as outcome in the mediation analysis.

2.3 | Genotyping and polygenic scores (PGS)

Exfoliated cells brushed from the oral mucosa were used for genotyp-

ing. DNA isolation was conducted with QIAamp DNA mini Kit (Qiagen

GmbH, Hilden, Germany). Genotyping was performed with the Illu-

mina Infinium Global Screening Array 1.0 with MDD and Psych con-

tent (Illumina, San Diego, CA, USA) at the Life & Brain facilities (Bonn,

Germany). Filtering was done with PLINK 1.9 by eliminating all SNPs

with a minor allele frequency of <0.01, missing data >0.02, or deviat-

ing from Hardy–Weinberg equilibrium by a p-value <1 � 10�6. Sub-

jects were excluded due to sex mismatch, > 0.02 missingness, and

heterozygosity rate >j0.2j. A high quality (HWE p > .02, MAF >.02,

missingness = 0) and LD pruned (r2 = .01) SNP set was used for

assessing relatedness and population structure. Pi hat >.2 was used to

exclude subjects randomly in pairs of related subjects. Finally, we

computed principal components to control for population stratifica-

tion. Individuals who deviated more than 6 SD from the first 20 PCs

were categorized as outliers and excluded. The final data set consisted

of 523 participants and 492,348 SNPs.

We calculated genome-wide PGS for all participants using two

publicly available summary statistics: general intelligence (GI,
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N = 269,867) (Savage et al., 2018) and educational attainment (EA,

N = 766,345) (Lee et al., 2018). PGS were calculated as weighted

sums of a subject's trait-associated alleles across all SNPs using

PRSice 2.1.6. We report the best-fit PGS, meaning that the p-value

threshold for PGS calculation was chosen empirically (in steps of

5*10�5 from 5*10�8 to 0.5 and for all available SNPs) so that the cal-

culated PGS explained the maximum amount of I-S-T 2000 R variance

(Genç et al., 2021). The best-fit threshold selected for PGSEA was

1, for PGSGI it was 0.0062. The statistic “incremental R2” was taken as

a value for the predictive power of the PGS. Incremental R2 stands for

the increase in determination coefficient R2 when the corresponding

PGS is added to a regression model predicting I-S-T 2000 R together

with our control variables. The control variables chosen were age, sex,

and the first four principal components of population stratification.

We used linear parametric methods for all statistical analysis in

PRSice. Testing was two-tailed (α-level of p < .05). PGSEA explained

3.3% of variance in I-S-T 2000 R score, PGSGI explained 4.8%. Distri-

butions of PGSEA and PGSGI are depicted in Figure S1.

2.4 | Neuroimaging

2.4.1 | Acquisition of anatomical data

Magnetic resonance imaging was performed on a 3 T Philips Achieva

scanner with a 32-channel head coil. The scanner was located at Berg-

mannsheil University Hospital in Bochum, Germany. T1-weighted data

were obtained by means of a high-resolution anatomical imaging

sequence with the following parameters: MP-RAGE; TR = 8.179 ms;

TE = 3.7 ms; flip angle = 8�; 220 slices; matrix size = 240 � 240;

resolution = 1 mm � 1 mm � 1 mm; acquisition time = 6 min.

2.4.2 | Acquisition of diffusion-weighted data

Diffusion-weighted images (DWI) were acquired using echo planar imag-

ing with the following parameters: TR = 7652 ms, TE = 87 ms, flip

angle = 90�, 60 slices, matrix size = 112 � 112, resolution = 2 mm

� 2 mm � 2 mm. Diffusion weighting was carried out along 60 isotropi-

cally distributed directions with a b-value of 1000 s/mm2. In addition, six

volumes with a b-value of 0 s/mm2 and no diffusion weighting were

acquired. These served as an anatomical reference for motion correction.

In total, we acquired three consecutive scans, which were averaged fol-

lowing the established protocol (Genç et al., 2019). This was done to

increase the signal-to-noise ratio. Acquisition time was 30 minutes.

2.4.3 | Acquisition of resting-state data

Functional MRI resting-state images (rsfMRI) were acquired using

echo planar imaging (TR = 2000 ms, TE = 30 ms, flip angle = 90�,

37 slices, matrix size = 80 � 80, resolution = 3 mm � 3 mm � 3 mm).

Participants were instructed to lay still with their eyes closed and to

think of nothing in particular. Acquisition time was 7 min.

2.5 | Analysis of imaging data

2.5.1 | Analysis of anatomical data

Cortical surfaces of T1-weighted images were reconstructed using

FreeSurfer (http://surfer.nmr.mgh.harvard.edu, version 5.3.0), follow-

ing an established protocol (Dale et al., 1999; Fischl et al., 1999).

Pre-processing included skull stripping, gray and white matter seg-

mentation as well as reconstruction and inflation of the cortical sur-

face. These steps were performed individually for each participant.

Slice-by-slice quality control was performed and inaccuracies of

automatic pre-processing were edited manually. For the purpose of

brain segmentation, we used the Human Connectome Project's

multi-modal parcellation (HCPMMP). Respective parcellation com-

prises 180 areas per hemisphere and is based on structural, func-

tional, topographical, and connectivity data of healthy participants

(Glasser et al., 2016). The original data provided by the Human Con-

nectome Project were converted to annotation files matching the

standard cortical surface in FreeSurfer called fsaverage. This fsaver-

age parcellation was transformed to each participant's individual cor-

tical surface and converted to volumetric masks. Since

macrostructure (Cox et al., 2019) as well as white matter connections

(Genç et al., 2019) of subcortical areas have been shown to be asso-

ciated with intelligence, we added subcortical areas to the DWI anal-

ysis. For this, eight subcortical gray matter structures per hemisphere

were added to the parcellation (thalamus, caudate nucleus, putamen,

pallidum, hippocampus, amygdala, accumbens area, ventral dienceph-

alon) (Fischl et al., 2004). All masks were linearly transformed into

the native spaces of the diffusion-weighted images and used as land-

marks for graph theoretical connectivity analyses (see Figure 1).

Additionally, a white matter mask as well as six regions representing

the four ventricles of the brain were delineated to serve as a nui-

sance variable for later BOLD signal analyses in terms of partial cor-

relation analyses. For clarity, these partial correlations will be

referred to as correlations in the rest of the manuscript. The subcor-

tical areas were not used in the rsfMRI analysis, because the result-

ing brain areas are not optimal for resting-state analysis due to being

large and functionally heterogenous (Ma et al., 2022). We computed

a mean value for each brain region by averaging values across the

left and right hemispheres (e.g., the value for area V1 is the mean of

L_V1 and R_V1), as we did not have any specific hypotheses with

regard to hemispheric differences. This resulted in 180 for the analy-

sis of surface area, cortical thickness and resting-state fMRI, and

180 cortical and cortical and 8 subcortical areas for the DWI analy-

sis. This was due to the literature being highly inconsistent. While

some studies report a positive association of functional and struc-

tural asymmetries with intelligence (Barbey et al., 2012; Santarnecchi

et al., 2015), others report a negative association (Moodie
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et al., 2020; O'Boyle et al., 2005; Yeo et al., 2016), no association

(Ntolka & Papadatou-Pastou, 2018; Papadatou-Pastou &

Tomprou, 2015) or different directions of association depending on

the specific item (Everts et al., 2009; Gläscher et al., 2009). However,

an exploratory hemispheric-specific analysis can be found in

Figures S4, S5 and Table S5.

2.5.2 | Analysis of diffusion-weighted data

Diffusion tensor modelling and probabilistic fiber tractography were

conducted using the FDT toolbox (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FDT) in FSL version 5.0.9. (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki), following the standard protocol (Behrens et al., 2003). Image

pre-processing included eddy currents correction and head motion

correction. Additionally, the gradient directions of each volume were

adjusted using the rotation parameters that were obtained from head

motion correction. As described in the previous section, the 180 corti-

cal and 8 subcortical regions from each hemisphere were transformed

into the native space of the diffusion-weighted images. Subsequently,

these transformed regions were used as seed and target regions for

probabilistic fiber tractography. To this end, we used a dual-fiber

model implemented in the latest version of BEDPOSTX (https://users.

fmrib.ox.ac.uk/�moisesf/Bedpostx_GPU/). This model allows for the

representation of two fiber orientations per voxel and thus enables

the modelling of crossing fibers, which produces more reliable results

compared to single-fiber models (Behrens et al., 2007). The classifica-

tion targets approach implemented in FDT was used to perform prob-

abilistic fiber tracking (Genç et al., 2019). Five thousand tract-

following samples were generated at each voxel. The step length was

0.5 mm and the curvature threshold was 0.2 (only allowing for angles

larger than 80 degrees). In order to quantify the connectivity between

a seed voxel and a specific target region, the number of streamlines

originating from the seed voxel and reaching the target region was

determined. Subsequently, the overall connectivity between two brain

regions was determined by calculating the sum of all streamlines pro-

ceeding from the seed to the target region and vice versa.

2.5.3 | Analysis of resting-state data

Resting-state data were pre-processed using the FSL toolbox

MELODIC. The first two volumes of each resting-state scan were dis-

carded. This was done to allow for signal equilibration. Afterwards,

motion correction (reference volume = third image), slice timing cor-

rection, as well as high-pass temporal frequency filtering (0.005 Hz)

was applied. We applied 6 mm spatial smoothing. We also applied

ICA-AROMA protocols as described by Pruim et al. (2015) to correct

for micro movements. Analogous to the analysis of the diffusion data,

all brain regions were transformed into the native space of the

resting-state images for functional connectivity analysis. For each

region, a mean resting-state time course was calculated by averaging

the time courses of all corresponding voxels. We computed partial

correlations between the average time courses of all cortical regions

while controlling for several nuisance variables, namely all six motion

parameters as provided by MELODIC as well as average time courses

extracted from white matter regions and ventricles (see 2.5.1. analysis

of anatomical data) (Fraenz et al., 2021). We applied Fisher z-

transformation to all correlation values (Fisher, 1921) to ensure that

they were normally distributed.

2.6 | Graph metrics

Graph metrics were calculated using the Brain Connectivity Toolbox

(Rubinov & Sporns, 2010) in combination with in-house MATLAB

code. DWI networks consisted of 376 nodes, including 360 cortical

(180 in each hemisphere) and 16 subcortical regions (8 in each hemi-

sphere). Resting-state fMRI networks consisted of 360 cortical nodes

(180 in each hemisphere). We employed Holm-Bonferroni pruning

with a threshold of 0 (α = .01, one tailed) as proposed by Ivkovi�c et al.

(2012) since this approach circumvents some risks of applying a fixed

threshold to a network, namely excluding viable connections when

the threshold is set too high or including spurious connections if the

threshold is set too low. Here, using the variance of all weights in the

upper matrix triangle of all participants, every edge weight is tested to

determine, if it is a spurious network connection or not. For example,

a vector containing the edge weights of the edge between L_V1 and

L_V2 of all participants is tested against zero. The edge is removed

from the network if its edge weights do not differ significantly from

zero. After doing this once for every edge, the procedure is repeated

with the variance of all remaining weights in the upper triangle, to

specifically test if this connection is crucial considering the whole net-

work. This is done until the network does not contain any spurious

connections anymore (Ivkovi�c et al., 2012). This pruning method was

specifically chosen since intelligence is attributed to a widely distrib-

uted network all over the brain. Therefore, we wanted to test the

importance of a connection within the whole network considering all

edges in a network by using the joint variance of all network edges.

By following this approach, 65,357 edges from the DWI network and

717 edges from the resting-state network were removed. Two nodes

(LH_H and RH_H) were removed from the resting-state network

completely, as they did not show any connections to other nodes

after pruning. Using the Brain Connectivity Toolbox, we computed

global efficiency (DWIE and rsfMRIE), a graph metric used in previous

studies investigating the association between network connectivity

and cognitive performance (Kruschwitz et al., 2018; Ma et al., 2017).

Global efficiency quantifies how efficiently the information can be

transferred across the brain (Sporns et al., 2004). Large edge weights

and small shortest path lengths typically lead to an increase in this

metric. The shortest path is defined as the minimal number of edges it

needs to connect a pair of nodes. The shortest path lengths between

all pairs of nodes are comprised in the distance matrix d. This matrix

can be created by calculating the inverse of the weighted adjacency

matrix and running Dijksta's algorithm (Dijkstra, 1959). The global effi-

ciency of one specific brain region is called nodal efficiency. It is calcu-

lated as the average inverse shortest path length between node i and

all other nodes j within a network G (DWIEi and rsfMRIEi). Calculations
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for global and nodal efficiency for DWI and rsfMRI were performed in

an identical manner. The global efficiency of the entire network is the

average inverse shortest path length between each pair of nodes

within G (E):

E¼1
n

X

i � G

Ei ¼1
n

X

i � G

P
j � G,j≠ id

�1
ij

n�1

2.7 | Statistical analysis

All statistical analyses were conducted in R Studio (1.3.1093) with R

version 4.1.0 (2021-05-18). Data points were treated as outliers if

they deviated more than three interquartile ranges from the respec-

tive variable's group mean (I-S-T 2000 R sum score, total surface area,

mean cortical thickness, DWI or rsfMRI global efficiency). In such

cases, all data from the corresponding participant were removed from

analysis. No subjects were excluded from analyses concerning cortical

surface area and cortical thickness (523 remaining subjects). Three

subjects were excluded from analyses concerning DWI connectivity

(520 remaining subjects) and one subject was excluded from analyses

concerning rsfMRI (522 remaining).

2.7.1 | Partial correlations

We computed partial correlations between the I-S-T 2000 R score,

two PGS (EA and GI), and several brain parameters (total surface area,

mean cortical thickness, DWI global efficiency and rsfMRI global effi-

ciency) using the partial.cor function included in the RcmdrMisc pack-

age. Age and sex were treated as confounding variables and

regressed out.

2.7.2 | Global mediation model

We computed a mediation model using the lavaan package. The I-S-T

2000 R sum score served as the dependent variable, the two PGS

(EA and GI) served as the independent variable. Mediators were surface

area, cortical thickness, DWI global efficiency and rsfMRI global effi-

ciency. Furthermore, we controlled for age, sex, and the first four principal

components of the population stratification. Figure 1 (bottom half, middle

box) shows a schematic depiction of a single mediation model. We used

the robust maximum likelihood estimator MLM with robust standard

errors and a Satorra-Bentler scaled test statistic (Satorra & Bentler, 1994).

2.7.3 | Brain area-specific mediation via elastic-net
regression

Mediation analysis by regularization

Following the computation of global mediation models, we investi-

gated if a set of specific brain areas mediates the effect of PGS on

I-S-T 2000 R. For this purpose, we employed exploratory mediation

analysis by regularization, a tool developed to identify a subset of

mediators from a large pool of potential mediators (Serang

et al., 2017; Serang & Jacobucci, 2020). This approach does not use p-

values to determine the statistical significance of a mediator. Hence, it

does not require a standard correction procedure for multiple compar-

isons (e.g., FDR or Bonferroni [G�ongora et al., 2020]). Instead, it uti-

lizes regularization such as the least absolute shrinkage operator

(lasso), which puts a penalty on effect sizes. Here, small effects are

pushed down to zero and only strong effects remain non-zero. An in-

depth explanation of this approach is provided by Serang et al. (2017).

In short, all potential mediators are included in the model and the

corresponding regression weights a and b are penalized (Ammerman

et al., 2018). The penalty term lambda is determined using k-fold

cross-validation, which is a mechanism to prevent overfitting. Here,

the data is split into k subsets. One of those subsets is selected as the

testing set while the rest of the data is used as the training-set. This is

done k times with every subset being used as the testing set once.

The mediation effect of a mediator is calculated by multiplying the

regression parameters a and b. If either parameter is regularized to

zero, the mediation effect also becomes zero. If both a and b remain

non-zero after regularization, the mediation effect will be non-zero as

well. After this penalization procedure, all potential mediators with

non-zero mediation effects are selected as mediators. While this

method is a good way of eliminating mediators with small effect sizes,

it also brings the effect sizes of real mediators close to zero. In order

to address this potential bias, the model is fit again without penaliza-

tion. With a model that only includes the pre-selected subset of medi-

ators, unbiased effect sizes can be acquired (Serang &

Jacobucci, 2020).

In this manuscript, we employed elastic-net regression. Elastic-

net is another type of regularized regression that combines lasso and

ridge regression (Zou & Hastie, 2005). The difference between ridge

and lasso-regression is that the lasso penalty can shrink a parameter

to zero, whereas ridge regression can only asymptotically shrink a

parameter towards zero. Thus, lasso is suitable for models in which a

lot of variables are expected to have no or little effect on the depen-

dent variable, while ridge regression is suitable for models in which

most variables are expected to have a considerable effect on the

dependent variable. Elastic-net regression can be considered an ideal

approach if one does not have clear expectations regarding every vari-

able. In comparison to lasso regression, elastic-net regression is also

better at handling correlations between variables (Zou &

Hastie, 2005), which was an important factor in our decision to

choose elastic-net over lasso regression. Regularized elastic-net

regression has already been successfully applied in a previous study

investigating the association between fluid/crystallized intelligence

and the microstructure of multiple white-matter tracts (G�ongora

et al., 2020).

Alterations to xmed function and recalculation of effect sizes

We employed an altered version of the function provided by Serang

and Jacobucci (2020). The modified code can be found at https://osf.
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io/2qamu/. First, we did not use the lambda sequence specified in the

xmed function, but the default lambda sequence the glmnet package

(Friedman et al., 2010) which xmed interfaces to. This was done

because the lambda sequence specified by xmed leads to ceiling

effects in the lambda parameters. Second, the original function does

not account for the direct effect of the independent variable (PGS) on

the dependent variable (I-S-T 2000 R score). Thus, we included the

PGS as an independent variable in the regression of the mediators on

the dependent variable (path b). This effect was not penalized.

Apart from investigating which brain areas mediate the relation-

ship between PGS and intelligence, we were also interested in the

direct effects of PGS on the brain and the direct effects of the brain

on intelligence (see Figure 1, paths a,b). Thus, we followed a similar

approach to identify variables exhibiting non-zero effects within path

F IGURE 1 Processing steps of neurocognitive data and statistical analysis. First, T1-weighted anatomical images were used to compute
estimates of cortical surface area and cortical thickness. Second, T1-weighted anatomical images were segmented into 180 cortical structures per
hemisphere according to the HCPMMP atlas and 8 subcortical structures per hemisphere. Third, the resulting masks were linearly transformed
into the native spaces of the resting-state and diffusion-weighted images. For the diffusion-weighted images, probabilistic fiber tracking was
carried out with the aforementioned masks serving as seed and target regions. For the resting-state images, correlations between average BOLD
time courses of all brain regions were computed. Fourth, structural and functional networks were constructed. Edges were weighted by the
results of probabilistic fiber tractography or BOLD signal correlation. Fifth, these networks were used for the computation of global efficiency
measures rsfMRIE and DWIE as well as nodal efficiency measures rsfMRIEi and DWIEi. Sixth, global mediation analyses were performed for each
combination of brain metric and PGS. Here, general intelligence as quantified by the I-S-T 2000 R sum score served as the dependent variable.
Independent variables were one of the two PGS (PGSEA and PGSGI). Whole brain measures (total surface area, mean cortical thickness, DWIE or
rsfMRIE) served as mediators. Finally, region-specific multi-mediator analyses were performed via elastic-net regression for each combination of
brain metric and PGS. Again, the I-S-T 2000 R sum score was the dependent and PGS the independent variable. Surface area, cortical thickness,
DWIEi or rsfMRIEi of each HCPMMP area served as mediators.
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a and path b regressions. The threshold for detecting non-zero effects

was set to 0.01. This was done because the mediation effects are the

product of the regularized a and b parameters, which take values

below 1. Hence, mediation effects are smaller compared to the regu-

larized a and b parameters. Again, coefficients were re-estimated with

lavaan to avoid biased effect sizes.

Specific mediation models

For the procedure described above, we used the xmed function from

the regsem package (Ammerman et al., 2018; Serang et al., 2017;

Serang & Jacobucci, 2020). All variables were standardized and resi-

dualized for sex, age and the first four principal components of popu-

lation stratification. We computed 8 mediator models for all

combinations of PGS (GI, EA) and brain parameters (surface area, cor-

tical thickness, DWI nodal efficiency, rsfMRI nodal efficiency). This

resulted in the following mediation models (independent variable–

mediators–dependent variable): PGSEA–surface area–I-S-T-2000 R

score, PGSEA–cortical thickness– I-S-T-2000 R score, PGSEA–DWI

nodal efficiency– I-S-T-2000 R score, PGSEA–rsfMRI nodal efficiency–

I-S-T-2000 R score, PGSGI–surface area–I-S-T-2000 R score, PGSGI–

cortical thickness–I-S-T-2000 R score, PGSGI –DWI nodal efficiency–

I-S-T-2000 R score, PGSGI–rsfMRI nodal efficiency–I-S-T-2000 R

score.

For all models, the number of cross-validation folds was set to

k = 80. The threshold for detecting non-zero mediation effects was

set to 0.001 and the type of regression was set to elastic-net for all

mediation models. PGS served as the independent variable and the

I-S-T 2000 R sum score as the dependent variable. After the pruning

procedure described above (see 2.6. Graph metrics), mediator models

involving surface area and cortical thickness comprised 180 potential

mediators each (180 cortical areas). The model involving DWI nodal

efficiency comprised 188 potential mediators (180 cortical and 8 sub-

cortical areas) and the model involving rsfMRI nodal efficiency com-

prised 179 potential mediators (179 cortical areas).

To investigate different dependencies and competitions between

brain metrics, we calculated two exploratory models which comprise

all brain metrics as mediators (727 mediators). The models were calcu-

lated as follows (independent variable – mediators – dependent vari-

able): PGSEA – surface area (180 cortical areas) + cortical thickness

(180 cortical areas) + DWI nodal efficiency (188 cortical and subcorti-

cal areas) + rsfMRI nodal efficiency (179 cortical areas) – I-S-T 2000

R score, PGSIQ – surface area (180 cortical areas) + cortical thickness

(180 cortical areas) + DWI nodal efficiency (188 cortical and subcorti-

cal areas) + rsfMRI nodal efficiency (179 cortical areas) – I-S-T 2000

R score. Results are depicted in Figures S2 and S3. This analysis

included participants that were not marked as an outlier for any of the

brain metrics (n = 519).

2.8 | Overlap of mediating areas and P-FIT

Finally, we aimed to test whether the mediating brain areas over-

lapped with the P-FIT network. It is important to note, that the P-

FIT network is based on Brodmann areas (BA). In the original ver-

sion proposed by Jung and Haier (2007), the P-FIT features a net-

work of 14 BA. In an updated version by Basten et al. (2015) the

network's composition was confirmed, but also extended with

5 additional BA. In order to compare the HCPMMP areas from our

analyses with P-FIT BA, we employed a cortical parcellation based

on BA, which is included as an annotation file in FreeSurfer. This

annotation file was converted to a volumetric segmentation match-

ing the cortex of the fsaverage standard brain. The same was done

to the HCPMMP annotation file. By means of an in-house MATLAB

program, the overlap between all HCPMMP and BA areas was cal-

culated. An HCPMMP area was specified as being part of the P-FIT

network when it showed at least 80% overlap with one or more P-

FIT BA in both hemispheres. It was also specified as being P-FIT

when its activity was identified as being associated with fluid intelli-

gence in both hemispheres in a recent meta-analysis (Santarnecchi

et al., 2017). This was true for 88 HCPMMP areas. Thus, this trans-

lation from BA to HCPMMP can be considered very liberal, as it

classifies a large number of areas as being part of the P-FIT net-

work. Researchers who want to use this classification of a more

detailed atlas or compare atlases in their studies can find a full list

of all HCPMMP areas belonging to the P-FIT with their respective

BA and overlap in Table S1.

3 | RESULTS

In preliminary analyses, to gain an overview of bivariate correlations

and to compare our data with previously reported results, partial cor-

relations were computed to test the associations between PGS and

intelligence, PGS and whole brain properties, as well as whole brain

properties and intelligence (see Table 1). Both PGS were significantly

associated with the I-S-T 2000 R sum score (see Table 1) and total

surface area. PGSEA was also associated with DWIE. The I-S-T 2000 R

sum score was associated with both total surface area and DWIE.

Mean cortical thickness and rsfMRIE were not associated with PGS or

the I-S-T 2000 R sum score (see Table 1).

3.1 | Global mediation analysis

Results of the global mediation analysis are shown in Figure 2. Even

though preliminary analysis did not reveal an association between

PGS and cortical thickness and rsfMRIE, we still investigated a poten-

tial mediation effect. This was done because the indirect effect cannot

be concluded from a and b alone but is always the product ab, and

statistical significance of a and b are not requirements for a mediation

effect (Hayes, 2018; Zhao et al., 2010). PGSEA was significantly asso-

ciated with total surface area and DWIE. Total surface area and DWIE

were significantly associated with the I-S-T 2000 R sum score. How-

ever, none of the brain parameters turned out to be significant media-

tors in the effect of PGS on general intelligence on a whole brain level

(all p > .08).
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3.2 | Brain area-specific mediation

3.2.1 | Surface area

Results of the region-specific multi-mediator analysis via elastic net

showed that PGSEA was associated with the surface area of the

majority of HCPMMP areas (112 areas; Figure 3). All effects except

one were positive, indicating that higher PGSEA is associated with

larger surface area (path a). Furthermore, the surface area of 18 brain

areas in the parietal and frontal cortices was associated with the I-S-T

2000 R sum score (path b). Ten out of these brain areas mediated the

effects of PGSEA on general intelligence (a*b). HCPMMP areas 4 (pri-

mary motor cortex), 6r (premotor cortex), MIP, IP1 (intraparietal

areas), OFC (orbital frontal cortex), OP1 (parietal operculum), STGa

(anterior superior temporal gyrus), and PH (posterior temporal cortex)

showed positive mediation effects. HCPMMP area 1 (somatosensory

cortex) and IFSa (inferior frontal sulcus) showed negative mediation

effects. Half of these areas were found to be part of the P-FIT net-

work (MIP, 6r, IFSa, PH, IP1).

Similar results were obtained when PGSGI was used as the predic-

tor (see Figure 4). We found PGSGI to be associated with the surface

area of 87 brain areas distributed all over the cortex, with most areas

largely matching (83%) those identified by the PGSEA analysis. The

surface area of eight areas was associated with general intelligence.

Three of these areas mediated the effects of PGSGI on general intelli-

gence, namely HCPMMP areas MIP, IP1 (intraparietal areas), and PH

(posterior temporal cortex). It is noteworthy, that all of these areas

were identified as mediators in the PGSEA analysis as well. All areas

were found to be part of the P-FIT network.

3.2.2 | Cortical thickness

PGSEA was associated with cortical thickness in 39 brain areas, of

which 26 (67%) exhibited positive effects and 13 (33%) exhibited neg-

ative effects. Seven cortical areas showed significant associations

between cortical thickness and general intelligence. Three of these

areas mediated the effects of PGSEA on the I-S-T 2000 R sum score.

TABLE 1 Partial correlation
coefficients (Pearson's r) between I-S-T
2000 R performance, PGS for education
attainment (EA), general intelligence (GI)
and brain properties.

I-S-T 2000 R SA CT DWIE rsfMRIE

PGSEA 0.184*** 0.106* 0.016 0.148*** 0.006

PGSGI 0.235*** 0.087* �0.005 0.081 0.003

I-S-T 2000 R 0.149*** 0.013 0.091* �0.03

Note: Age and sex were used as controlling variables.

Abbreviations: CT, cortical thickness; DWIE, DWI-network global efficiency; rsfMRIE, resting-state

network global efficiency; SA, surface Area.

*p < .05.***p < .001 (two-tailed).

F IGURE 2 Results of the global mediation analysis. We used total surface area, mean cortical thickness, DWIE and rsfMRIE as mediators. In all cases,
general intelligence, as measured by the I-S-T 2000 R sum score, served as the dependent variable. PGSEA or PGSGI served as independent variables.
Effect sizes and p-values are depicted in black (above the arrows) for analyses with PGSEA and in orange (below the arrows) for analyses with PGSGI.
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F IGURE 3 Results of the region-specific multi-mediator analysis via elastic net with PGSEA as the dependent variable. The analysis employed
the following mediators: surface area, cortical thickness, DWIEi, and rsfMRIEi (from top to bottom). The figure shows the results from path
a analysis, path b analysis, and the mediation effect (from left to right). Brain surfaces are shown in lateral, inferior, sagittal, and superior view
(from left to right). Positive effects are depicted in red and yellow, negative effects are depicted in blue. Colored mediating areas are labeled
according to the HCPMMP. Path a analysis of DWIEi also revealed positive associations between PGSEA and eight subcortical areas. For a full list
of areas and effect sizes see Tables S2 and S3.
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F IGURE 4 Results of the region-specific multi-mediator analysis via elastic net with PGSGI as the dependent variable. The analysis employed
the following mediators: surface area, cortical thickness, DWIEi, and rsfMRIEi (from top to bottom). The figure shows the results from path
a analysis, path b analysis, and the mediation effect (from left to right). Brain surfaces are shown in lateral, inferior, sagittal, and superior views
(from left to right). Positive effects are depicted in red and yellow, negative effects are depicted in blue. Colored mediating areas are labeled
according to the HCPMMP. Path a analysis of DWIEi also revealed positive associations between PGSGI and six subcortical areas. For a full list of
areas and effect sizes see Tables S2 and S3.
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HCPMMP areas FOP1 (frontal operculare area) and PreS (presubicu-

lum) exhibited positive mediation effects, while area 25 (superior

anterior cingulate cortex) exhibited a negative mediation effect. PGSGI

was associated with cortical thickness in 48 areas (21 positive associa-

tions and 27 negative associations) with limited overlap (23%)

between the PGSEA and PGSGI analyses. The PGSGI mediation model

did not yield any areas which showed significant associations between

cortical thickness and general intelligence. Consequently, no media-

tors for the effects of PGSGI on general intelligence could be identi-

fied. None of the mediating areas were part of the P-FIT network.

3.2.3 | DWI network efficiency

PGSEA was positively associated with DWIEi in all cortical and subcor-

tical areas (188). There were 12 areas in which DWIEi was associated

with general intelligence. All of these areas were also mediators

regarding the effects of PGSEA on general intelligence. HCPMMP

areas 6ma (anterior supplementary motor cortex), 6r (premotor cor-

tex), 44, 45 (inferior frontal gyrus), 47 s (orbitofrontal cortex), and

43 (posterior opercular cortex) exhibited positive mediation effects.

HCPMMP areas LO1, LO2 (lateral occipital cortex), 5mv (superior pari-

etal cortex), VMV1 (ventromedial visual area), Pir (piriform cortex), and

pOFC (posterior orbitofrontal complex) exhibited negative mediation

effects. Half of these areas were found to be part of the P-FIT net-

work (LO1, LO2, 44, 45, 6r, 6ma). Similarly, PGSGI was positively asso-

ciated with DWIEi in 144 areas. DWIEi was associated with general

intelligence in three areas and two of them, namely HCPMMP areas

45 (inferior frontal gyrus) and Pir (piriform cortex), were also found to

be mediators regarding the effects of PGSGI on general intelligence.

These two areas were also identified as mediators in the PGSEA analy-

sis. HCPMMP area 45 was found to be part of the P-FIT network.

3.2.4 | rsfMRI network efficiency

PGSEA was associated with rsfMRIEi in 29 areas, with 13 (45%) show-

ing a positive association. There were no areas that exhibited signifi-

cant associations between rsfMRIE and general intelligence or

mediated the effects of PGSEA on general intelligence. PGSGI was

associated with rsfMRIEi in 35 areas, with 18 (51%) of them showing

positive associations. There were no areas that exhibited significant

associations between rsfMRIEi and general intelligence or mediated

the effects of PGSGI on general intelligence.

Complete lists of HCPMMP areas and effect sizes can be found

in Table S2 (path a), Table S3 (path b), and Table S4 (mediation).

3.3 | Exploratory multimodal region-specific multi-
mediator analysis

To investigate different dependencies and competitions between

brain metrics, we calculated two exploratory models which comprise

all brain metrics as mediators (728 mediators). The results are

depicted in Figures S2 and S3. While this analysis revealed fewer

mediators than the main analysis, the chosen mediators are the same.

For PGSEA, the exploratory analysis revealed the surface area of IFSa,

4, MIP and IPS to act as mediators. Additionally, cortical thickness of

FOP1 and PreS as well as DWI network efficiency of HCPMMP

45 were identified as mediators. For PGSGI it identified surface area

of HCPMMP 4 as a mediator.

4 | DISCUSSION

Genetic variability robustly predicts interindividual differences in intel-

ligence, but it is still largely unknown which neurobiological intermedi-

ates are involved in the path from genetic disposition to phenotype.

Hence, it was the aim of our study to conduct integrative analyses

encompassing genome-wide SNP variability, in-depth brain imaging,

and detailed measurement of cognitive abilities. By doing so, we were

able to show that regional surface area and structural network effi-

ciency are mediators of the relationship between genetic disposition

and measured intelligence.

In line with other studies, PGS significantly predicted cognitive

abilities. Furthermore, PGS were associated with morphological and

connectivity brain measures of widely distributed cortical and subcor-

tical regions, a finding which is in accordance with previously reported

results showing genetic correlations between cognitive abilities and

brain structure (Grasby et al., 2020). To further investigate which of

these brain areas link genetic variation to differences in cognitive abil-

ities, four brain properties on global and regional level were tested as

putative mediators. rsfMRI was not associated with cognitive abilities,

neither on a global scale nor on the level of brain regions. In case of

cortical thickness, there was limited evidence of mediation effects.

However, the surface area and structural connectivity of several brain

areas were associated with intelligence and also identified as

mediators.

With regard to surface area, we found ten brain regions that

mediated the effects of PGSEA on general intelligence. Respective

areas were mainly located in the posterior parietal, posterior temporal,

and superior frontal cortices. Three of these areas were also identified

when PGSGI was used as predictor and half of the mediating areas

were part of the P-FIT network (MIP, 6r, IFSa, PH, IP1). There were

five brain areas outside of the P-FIT network, namely the primary

motor cortex (4), the primary somatosensory cortex (1), the orbito-

frontal cortex (OFC), and the posterior part of the parietal operculum

(OP1). The common observation that the volume or surface area of

cortical gray matter is positively associated with intelligence is typi-

cally explained in the following way. Individuals with more cortical

volume or surface area are likely to possess more neurons (Leuba &

Kraftsik, 1994; Pakkenberg & Gundersen, 1997). A higher count in

cortical neurons also indicates a higher number of synapses

(Karbowski, 2007). Therefore, it is assumed that individuals with more

cortical gray matter have more computational power to engage in

problem solving and logical reasoning (Genç et al., 2018). Following
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this explanation, our results indicate that the SNPs associated with

cognitive abilities may influence the gene expression related to neu-

ron and synapse count within specific cortical areas. This in turn might

influence intelligent thinking.

Our findings related to non-P-FIT areas are largely in line with the

findings by Lett et al. (2020), who also found a mediating effect of sur-

face area in parts of the primary motor cortex, the orbitofrontal cor-

tex, and the parietal operculum. The orbitofrontal cortex and its

interaction with the anterior cingulate cortex have been associated

with decision making (Fatahi et al., 2020). The orbitofrontal cortex

encodes the value of available choices based on past experiences. The

anterior cingulate cortex is involved in a more “down-stream” proces-
sing of decision consequences (Wallis & Kennerley, 2011). While the

primary motor cortex is usually not associated with intelligence, its

structural and functional properties have been found to change in

accordance with verbal and non-verbal intelligence in teenagers

(Ramsden et al., 2011). The authors argue that this finding is indicative

of an interrelation between cognitive and motor development

(Wallis & Kennerley, 2011), which may also be one reason behind the

association between motor skills, cognitive performance, and aca-

demic achievements (Syväoja et al., 2019; Trecroci et al., 2021).

Although the primary somatosensory cortex was not identified as a

mediator by Lett et al. (2020) or Elliott et al. (2019), a meta-analysis

revealed its functional properties to be associated with fluid intelli-

gence (Santarnecchi et al., 2017).

Many biological theories of intelligence highlight the importance

of efficient information exchange across the brain. Naturally, this task

is heavily dependent on the structural quality of an extensive brain

network. A neuronal circuitry associated with higher intelligence is

thought to foster a more directed information processing along rele-

vant areas within the network. Our findings support this assumption

by showing that the structural nodal efficiency of twelve brain areas

mediated the relationship between PGSEA and general intelligence.

Moreover, two of these brain areas were also identified in the PGSGI

analyses. It is noteworthy that half of the mediating areas are part of

the P-FIT network (6ma, 6r, 44, 45, LO1, LO2). The inferior frontal

gyrus (45, 44), the premotor cortex (6r), and the anterior supplemen-

tary motor cortex (6ma) exhibited positive mediation effects. Parts of

the lateral orbitofrontal cortex (LO1, LO2) exhibited negative mediat-

ing effects, which was due to negative associations between their

structural connectivity and general intelligence. We also observed

multiple mediators outside of the P-FIT network. The ventromedial

visual area (VMV1) and posterior orbitofrontal cortex (pOFC) exhib-

ited negative mediation effects, which was due to negative associa-

tions between their nodal efficiency and general intelligence. The

orbitofrontal cortex (47 s) and posterior opercular cortex (43) exhibited

positive mediation effects. Functional properties of the right orbito-

frontal cortex have been shown to be positively associated with fluid

intelligence in a recent meta-analysis (Santarnecchi et al., 2017). The

posterior opercular cortex is part of the so-called cingulo-opercular

network (Power & Petersen, 2013) which plays a critical role in intelli-

gence according to the Network Neuroscience Theory (Barbey, 2018).

This theory proposes that the neural basis of general intelligence is

manifested in the dynamics of multiple brain-wide modular networks.

In other words, the Network Neuroscience Theory emphasizes that

intelligence depends on the efficiency with which specific brain net-

works can be reorganized and adapted to a situation. It has to be

noted that this theory is focused on the dynamic state of networks

and is largely based on functional studies. Hence, it may not directly

be applicable to white matter connectivity, even though functional

networks have been proposed to arise from structural connectivity

(Park & Friston, 2013). The Network Neuroscience Theory proposes

that crystallized intelligence relies on easy-to-reach functional net-

work states which in turn rely on strong connections between some

highly connected brain areas. In contrast, fluid intelligence is supposed

to rely on difficult-to-reach network states, which in turn rely on weak

connections between networks. Weak connections giving rise to

difficult-to-reach network states are located in the frontoparietal net-

work and the cingulo-opercular network (Barbey, 2018). For the most

part, P-FIT emerged from macrostructural studies. When looking at

intelligence from a connectivity-based perspective, as is done in Net-

work Neuroscience Theory, it seems plausible that there are brain

areas whose morphological properties are not related to intelligence,

while their connectivity patterns are. Our results support this assump-

tion by showing that a group of SNPs, identified by GWAS, is likely to

influence the gene expression shaping the structural efficiency of spe-

cific areas from an extensive and intelligence-related brain network.

Our results concerning the surface area and structural connectiv-

ity show that there are considerably more brain areas mediating the

effect between PGSEA and general intelligence than between PGSGI

and general intelligence. In all likelihood, this is due to the difference

in discovery sample sizes of respective GWAS. PGSEA was derived

from a GWAS with a sample size of 1,131,881 individuals (Lee

et al., 2018), whereas PGSGI was derived from a GWAS with a sample

size of 269,867 individuals (Savage et al., 2018). This results in the

greater predictive power of PGSEA. While PGSGI exhibited a stronger

association with general intelligence in our sample compared to

PGSEA, PGSEA exhibited stronger associations with the analyzed brain

properties (see Table 1). Some of the genes identified by Lee et al.

(2018) (PGSEA) are highly expressed in the brain prenatally and thus

influence the very early stages of brain development. Other genes

show high expression both prenatally and postnatally. Functionally,

the identified genes are involved in neurotransmitter secretion, the

activation of ion channels and metabotropic receptors, as well as syn-

aptic plasticity. Importantly, these genes are expressed in all parts of

the nervous system and not limited to a certain set of brain areas. Our

results are in line with this finding given that PGSEA were associated

with brain properties all over the cortex (Figures 3 and 4). However,

since our analyses also included the phenotype, we were able to spec-

ify which parts of the brain are affected by intelligence-related gene

expression as identified by Lee et al. (2018). Importantly, this

approach goes one step beyond investigating the genetic correlation

between cognitive and brain phenotypes.

Whereas the direction of effect from genes to cognitive abilities

and genes to brain structure is causal by definition (Plomin & von

Stumm, 2018), it is conceivable that there is a bidirectional
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relationship between brain structure and cognitive abilities. Recent

analyses used bidirectional latent causal variable and Mendelian ran-

domization to assess the causal direction between human cortical

structure, general intelligence, and educational attainment. They pro-

vide evidence for the influence of brain structure on general intelli-

gence and educational attainment (Grasby et al., 2020). Our

investigation includes both measured brain phenotype and detailed

characterization of cognitive abilities and thus provides further evi-

dence of causal processes between genetic variability and cognition

through variation in brain structure and network connectivity.

In addition to our main analysis, we have also conducted an

explanatory analysis in which the mediation model included all brain

metrics as mediators at once (see Figures S2 and S3). Interestingly,

the analysis yielded the same, albeit fewer, mediators as the main

analysis, mainly regarding surface area (4, MIP, IFSa, IP1). It must be

noted that this approach is rather exploratory, as previous studies

have always looked at metrics separately and the number of media-

tors in this model is huge for our sample size. Thus, we suggest that

future studies with possible larger sample sizes also employ joined

mediation models for multiple brain metrics. This may give us insight

into possible dependencies between brain metrics.

There are certain limitations to our study. First, PGS for educa-

tional attainment tends to overestimate genetically caused effects in

non-related samples (Abdellaoui & Verweij, 2021; Lee et al., 2018).

Lee et al. (2018) showed that the predictive power of PGS declines as

much as 40% when within-family differences in educational attain-

ment are taken into account, which is partly due to gene–environment

correlations. The genes of parents also influence the rearing environ-

ment of their child, which results in a correlation between the envi-

ronment and the genes a child inherits from their parents

(Abdellaoui & Verweij, 2021). The effect of parental genes on rearing

environment is demonstrated by the observation that even non-

shared genetic information of parents is predictive of a child's educa-

tional attainment (Kong et al., 2018). Thus, the predictive power of

the PGS utilized in our study can in part be attributed to gene–

environment correlations. Second, our functional connectivity analysis

did not identify any regions that mediated the effects of PGS on gen-

eral intelligence; or any brain area that was directly associated with

general intelligence (see Figures 3 and 4). In order to compute nodal

efficiency, we aggregated resting-state data across the entire time

span of our recordings. However, Network Neuroscience Theory

argues that the crucial aspect of intelligence-related functional net-

works is their dynamic flexibility (Barbey, 2018), which is not captured

by the metrics we used. Hence, it is indeed conceivable that the flexi-

bility of specific networks mediates the effects of genetic variation on

general intelligence. Future studies using temporally high resolution

rsfMRI and dynamic connectivity analyses should investigate the

mediation effects of dynamic connectivity metrics.

This study is the first to investigate the mediating effects of multi-

modal, region-specific brain properties on the association between

genetic variation and intelligence. We show that the surface area and

structural connectivity of frontal, sensory, motor, temporal, and ante-

rior occipital brain regions provide a missing piece in the link between

genetic variation and general intelligence. These findings are a crucial

step forward in decoding the neurogenetic underpinnings of intelli-

gence, as they identify specific regional networks that relate polygenic

variation to intelligence.
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