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A B S T R A C T

Until recently, investigating microscopic changes in the integrity of human brain matter has not been possible in
vivo. It has hence remained unknown whether and how small non-pathological variations in cytoskeletal neuronal
integrity affect human cognitive functioning. We investigated the role of neuronal cytoskeleton integrity for
complex multicomponent behavior, which is relevant to real-life situations, as complex goals are often achieved
by assembling a series of sub-tasks. For this, we quantified scaffolding proteins (i.e. neurofilament light; NF-L)
using a single-molecule array (SIMOA), a new and uniquely ultra-sensitive method, and integrated this with
behavioral and neurophysiological (EEG) data. For the first time, we showcase that slightest non-pathological
variations in cytoskeletal integrity strongly modulate the efficiency of cognitive control processes. We show
that the architecture and efficiency of theta-oscillations networks during cognitive control processes reflects a
mechanism that establishes the relationship between neuronal cytoskeleton integrity and multicomponent
behavior. Attentional selection processes do however not seem to play a role. The efficiency and network ar-
chitecture of theta oscillations provides an important missing neural link that helps to explain how diffuse and
seemingly miniscule variations in neuronal integrity may lead to reduced or even impaired cognitive functioning
that is important for everyday activities.
1. Introduction

In real-life situations, behavioral goals are often achieved by assem-
bling a series of sub-tasks (Diamond, 2013; Duncan, 2010). For example,
steering and switching gears of a car depend on a complex coordination
of actions. This sort of behavior has also been referred to as ‘multi--
component’ behavior and is often defined as the ability to interrupt,
generate, process, and execute/cascade separate task goals and responses
in an expedient temporal order to produce efficient goal-directed
behavior (Dippel and Beste, 2015; Duncan, 2010; Mückschel et al.,
2014; Stock et al., 2014a). Among other factors, the complexity of
multi-component behavior depends on whether the requirement for
different actions/task goals is signaled at the same time, or whether there
is a temporal gap between stimuli signaling/initiating two (or more)
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different actions (Dippel and Beste, 2015; Gohil et al., 2016, 2015;
Letzner et al., 2017; Mückschel et al., 2014). In case of simultaneous
input, one is left with the choice of how to process the different action-
s/task goals: The two actions could either be processed at once, or be
prioritized (i.e. performed in a serial, step-by-step fashion). Because
response selection depends on a restricted resource (Meyer and Kieras,
1997; Verbruggen et al., 2008; Wu and Liu, 2008; Wu et al., 2017), this
choice directly affects the efficacy of multi-component behaviour. If
participants choose to simultaneously process two (or more) task goals,
reaction times will increase because these processes have to share a
limited capacity (Miller et al., 2009; Verbruggen et al., 2008). If they
however choose a more serial step-by-step strategy and prioritize one
action over the other, the different actions will not have to share limited
response selection capacities so that multi-component behavior becomes
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more efficient (i.e. faster). Following from this, the efficiency of
multi-component behavior can be assessed by comparing the behavioral
performance in a “baseline” condition with enforced serial processing to
a condition that leaves a free choice of how task goals are processed. In
this setting, slower responses in the latter condition indicate less expe-
dient multicomponent behavior (Mückschel et al., 2015, 2014; Stock
et al., 2014a).

Multi-component behavior can be seen as the result of information
integration in a wide-spread functional neuroanatomical and neuro-
physiological network (Brandt et al., 2017; Duncan, 2010; Gohil et al.,
2015; Mückschel et al., 2014; Stock et al., 2017). On a neural network
level, the most efficient way to build a robust scalable network is through
predominantly local wiring (Van Essen, 1997). In this case, brain struc-
tures receive most information from their immediate neighbors and act
locally, as communicating with distant neurons via interneurons is
metabolically expensive (Kalisman et al., 2005). Yet, a neuronal network
that enables the brain to perform a complex coordination of several task
goals or actions (i.e. multi component behavior) must not only exhibit a
high local information processing efficiency, but also a high global in-
formation processing efficiency. Networks which accomplish both
exhibit so-called "small-world properties" (Achard and Bullmore, 2007;
Bassett and Bullmore, 2006; Bullmore and Sporns, 2009), which are
thought to enable the efficient separation and functional integration of
information (Achard and Bullmore, 2007; Bassett and Bullmore, 2006).
According to the temporal binding hypothesis (Crick and Koch, 2003;
Varela, 1995; von der Malsburg, 1994); the communication of two
distant neural populations cannot be explained by anatomical connec-
tivity per se but rather by the coherent temporal organization of activity
through oscillatory synchrony (Buzs�aki, 2006; Buzs�aki and Draguhn,
2004). This “binding by synchrony” mechanism emphasizes the impor-
tance of the oscillatory phase in the pairing of distinct neuron assemblies
and explains how many signals may be transmitted in parallel without
interference (Buzs�aki, 2006; Varela, 1995). From a biophysical point of
view, it has been shown that low-frequency/high-amplitude neural os-
cillations in neural networks reflect an ideal scheme to organize activities
across large spatial distances and brain regions (Buzs�aki, 2006). This may
particularly be the case for medial frontal theta oscillations (Cavanagh
and Frank, 2014) and could be one of the reasons why theta frequency
oscillations play a key role in mediating cognitive control (Cavanagh and
Frank, 2014; Cohen, 2014). Theta oscillations are also important for in-
formation integration in more circumscribed neural assemblies during
cognitive control (Cohen, 2014). This implies that theta oscillations
likely serve both large-scale and small-scale information integration in a
neuronal network and could be considered an information coordination
mechanism within a small-world-like network organization. It is there-
fore likely that the ability to efficiently accomplish multi-component
behavior relates to strong small-world properties. Due to these consid-
erations, especially the small-worldmetric may be particularly suitable to
examine the network architecture during cognitive control using
neurophysiological (EEG) methods. Regarding neurophysiological (EEG)
methods, it is important to consider that the EEG signal depends on the
transient synchronization of local field potentials (Hipp et al., 2012;
Pfurtscheller and Lopes da Silva, 1999). Importantly, the conceptuali-
zation of small-world networks and the mechanism underlying the
connection of neural assemblies is also based on the transient synchro-
nization of local field potentials (Achard and Bullmore, 2007; Bassett and
Bullmore, 2006). Thus, the small world measure is based on properties
also constituting the EEG signal. This makes the small-world metric
particularly suitable to characterized EEG networks (Vecchio et al.,
2018).

On a molecular level, a natural limiting factor for information inte-
gration in such a network is the constitution of the neuronal cytoskeleton,
which is determined by scaffolding proteins; i.e. intermediate filaments
(Lariviere and Julien, 2004; L�epinoux-Chambaud and Eyer, 2013; Zet-
terberg et al., 2013). Neurofilament (NF) proteins, especially the neu-
rofilament light (NF-L), which is a protein that is abundantly expressed in
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long myelinated subcortical white matter axons (Zetterberg et al., 2013),
constitute the major intermediate filament type in adult neurons. The
NF-L subunit serves as the core of the neurofilament protein and regu-
lates neuronal differentiation (Kong et al., 1998; Zetterberg et al., 2013).
Neurofilaments (especially the heavy chain of NF) are of essential
importance for the structural integrity and thereby the conduction ve-
locity of nerve impulses (Kriz et al., 2000), which constitute the basis for
any electrophysiological network. Under healthy conditions, NF-L shows
close relations with the integrity of the brain parenchym (Vågberg et al.,
2015). Following axonal damage or dysfunction, NF-L leaks into the
interstitial (cerebrospinal) fluid and subsequently into the bloodstream,
where it can be detected and measured in serum samples (sNF-L)
correlating with in-time NF-L CSF release (Disanto et al., 2017, 2016;
Teunissen and Khalil, 2012). Notably, there are close links between NF-L
and the integrity of white matter structure as shown in studies on
demyelinating diseases (Boesen et al., 2018; Khalil et al., 2018; Kuhle
et al., 2016b, 2017; Melah et al., 2016) and structural imaging studies on
longitudinal white matter degeneration (Racine et al., 2017). The white
matter connectivity pattern and the integrity of this has also been shown
to alter the dynamics of scalp EEG signals (Gong et al., 2017). The rele-
vance of structural (white matter) connectivity for EEG scalp signal
network dynamics seem to be that important, that the inter-relation of
these measures is discussed to be of clinical diagnostic relevance (Teipel
et al., 2016). It is therefore possible that neurobiological elements (i.e.
scaffolding proteins) affect neurophysiological network properties, as
measured using EEG methods while participants engage in cognitive
control functions. Importantly, using a single-molecule array (SIMOA)
assay, it is possible to estimate the concentration of NF proteins at con-
centrations as low as 10–20 molecules/100 μl (i.e. concentrations
<10�15 M) (Kuhle et al., 2016c) in blood sera (Disanto et al., 2017).
SIMOA has a 126- and 25-fold higher sensitivity than the ELISA and ECL
assays, respectively. It has furthermore a lower limit of quantification of
0.0178 pg/ml (Gissl�en et al., 2016; Kuhle et al., 2016a). It is therefore
possible to investigate the effects of even the slightest variations in the
constitution of the neuronal cytoskeleton on measures of cognitive con-
trol and multi-component behavior. Given that both the structural
integrity of the neuronal cytoskeleton and theta oscillations are pivotal
for the coordinated and expedient processing of complex input, we
further hypothesized that these factors should not only be closely linked
to the efficacy of multi-component behavior, but should also be closely
associated with one another. Specifically, we hypothesized that the ar-
chitecture and efficiency of theta-oscillation based networks reflects a
mechanism that establishes the relationship between microscopic
(structural integrity of the neuronal cytoskeleton) and macroscopic as-
pects (multi-component behavior performance) in the coordination of
complex actions.

To investigate these hypotheses, we examined the modulation of
cognitive control and multi-component behavior by normal, non-
pathologic molecule-level variations in scaffolding proteins (i.e. sNF-L).
Healthy young adults performed a stop-change paradigm (Mückschel
et al., 2014; Verbruggen et al., 2008) that requires fast and comparatively
easy right hand GO responses in two thirds of trials, while one third of the
trials requires stopping the right hand GO response (just like in a
stop-signal task) and additionally changing to an alternate left hand
response (so-called stop-change or SC trials). By varying the time interval
between STOP and CHANGE stimuli it is possible to scale the difficulty to
execute a correct response on the CHANGE stimulus. In a “baseline”
condition, the time interval forces participants to processes STOP and
CHANGE stimuli in a step-by-step fashion. In a “test” condition STOP and
CHANGE stimuli are presented simultaneously (SCD0 condition). By
calculating a slope value which reflects the response time difference
between the two conditions (for details please refer to the methods sec-
tion), we obtained a single behavioral score which reflects the efficacy of
multicomponent behavior. We expected higher sNF-L values to be asso-
ciated with reduced theta small-world properties and less expedient
multicomponent behavior. Since multi-component behavior as one
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instance of cognitive control can be seen as the result of information
integration in a wide-spread functional neuroanatomical and neuro-
physiological network (Duncan, 2010; Gohil et al., 2015; Mückschel
et al., 2014; Stock et al., 2017), especially this kind of task may be
suitable to examine the relevance of cytoskeletal integrity for cognitive
control processes.

2. Materials and methods

A sample of N¼ 60 healthy, young human participants (19–32 years,
mean age 24.17, SD¼ 3.25; 24 males) took part in the study. All par-
ticipants were right-handed and had an average education level of
16.4� 3.1 schooling years. All subjects had normal or corrected-to-
normal vision, normal hearing capabilities, and no history of any
neurological and psychiatric disorders. The study was approved by the
ethics committee of the medical faculty of the Technische Universit€at
Dresden and the Ruhr-Universit€at Bochum. All subjects provided written
informed consent and were treated in accordance with the Declaration of
Helsinki. The sample size was estimated a-priori assuming medium to
low effect sizes (f2¼ 0.25) in the correlation and regression analyses, an
alpha error probability of 5% and a power of 95%, we estimated a total
sample size using G-Power software (http://www.gpower.hhu.de/) and
ended up with a minimum sample size of n¼ 57 in case of one predictor.
Based on this, we decided to include n¼ 60 individuals in our sample. We
had to exclude n¼ 1 subject from all analyses including sNF-L values
because the SIMOA analysis was not possible. All subjects were tested at
the same time so that diurnal aspect cannot modulate the pattern of
results.

2.1. Task

To examine multi-component behavior and to vary the demands on
multi-component behavior, an established Stop-change paradigm was
used (Mückschel et al., 2014; Stock et al., 2014a; Verbruggen et al.,
2008). In short, this paradigm requires fast and comparatively easy right
hand GO responses in two thirds of the trials, while one third of the trials
requires stopping the right hand GO response (like in a stop-signal task)
and additionally changing to an alternate left hand response. The order
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the 864 trials was pseudo-randomized in each of the six experimental
blocks. The experimental paradigm is illustrated in Fig. 1.

During the task, the subjects were presented with a white bordered
rectangle (55� 16mm) on a black background (0.4 cd/m2) which con-
tained 4 vertically arranged circles with white borders, which were
separated by three white horizontal lines (width 13mm, line thickness
1mm) (17 inch CRT computer monitor, viewing distance of 57 cm). At
the beginning of each trial, this array was presented for 250ms. Then,
one of the four circles (diameter of 7mm) was filled in with white color
(120.1 cd/m2), thus becoming the target stimulus in the GO condition.
This GO stimulus remained on the screen until the end of the trial. The
participants were instructed to press one of two keys on the keyboard
with their right hand in order to report the location of this GO stimulus in
relation to the middle line. Specifically, participants had to respond with
their right middle finger (“K” key) when the target was located above the
middle line, and to respond with their right index finger (“N” key) when
the target was located below the middle line. The participants were asked
to respond within 1000ms after the target stimulus onset. Otherwise, a
speed-up sign (the German word “Schneller!” which translates to
“Faster!”) appeared above the stimulus array. This GO condition was
presented in two thirds of the trials presented in the experiment.

The other one third were Stop-Change (SC) trials. These trials also
began with the empty array followed by the GO stimulus. However, a
STOP stimulus (the white rectangle border turned red, see Fig. 1) was
presented after the GO stimulus during these trials. The onset asynchrony
between the GO and STOP stimuli was determined by a variable Stop-
signal delay (SSD), which was adjusted to each participant's individual
task performance. This was done using a staircase algorithm (Verbruggen
et al., 2008): Initially, the SSD was set to 250ms. When the participant
did not press a key before the presentation of the STOP stimulus and
correctly responded to the CHANGE stimulus as described below, the SSD
was increased by 50ms for the next SC trial. In contrast to this, any
incorrect responses during SC trials (i.e. responses within the SSD/before
the CHANGE stimulus as well as wrong responses to the CHANGE stim-
ulus) decreased the SSD for the next SC trial by 50ms. As a result, the
staircase procedure produced a 50% probability of successfully per-
formed stopping on SC trials in case participants correctly followed the
task instructions. Importantly, the 50% adjustment was only done during
Fig. 1. Illustration of the Stop change task.
In all conditions of this task, the subjects were asked to judge
the location of a single target (white filled circle) in relation to
either the middle reference line (GO trials, see figure part A) or
to the reference line indicated by the CHANGE stimulus (SC
trials, see figure part C). Every trial started with a 250ms
presentation of the empty visual array, followed by the target
stimulus (white filled circle), which appeared and stayed on
the screen until the first given response. (B) In simple GO
trials, participants were required to respond with their right
hand, while the left hand should be used in Stop-Change (SC)
trials. To indicate that the target was located below the
respective reference line, the index fingers had to be used. To
indicate that the target was located above the respective
reference line, the middle fingers had to be used.
(C) All SC trials started like regular GO trials, but an additional
stop signal (red frame) was added to the visual array after a
variable stop signal delay (SSD). The participants were told to
inhibit their right hand response upon the occurrence of the
stop signal. The change signal was either presented simulta-
neously with the stop signal (SCD0 condition), or with a stop-
change delay (SCD) of 300ms (SCD300 condition). In SC tri-
als, participants had to judge the target's position relative to
the reference line indicated by the change signal: A binaural
high (1300 Hz) tone coded for the high reference line, a me-
dium tone (900 Hz) for the middle line and a low tone
(500 Hz) for the low line. Please note that all green annota-
tions are only for illustrator purposes and were not shown to
the participants.

http://www.gpower.hhu.de/
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the staircase procedure to examine the SSRT; i.e. was related to the STOP
stimulus. Performance on the CHANGE stimuli was not adjusted to 50%.
The SSD variation was restricted to range from 50 to 1000ms to keep the
trial duration within reasonable limits.

Like the GO stimulus, the STOP stimulus remained on the screen until
the participants had responded to the CHANGE signal (a 200ms sine
tone, which was presented via headphones to both ears). In each SC trial,
one of three differently pitched tones (low/500Hz, middle/900 Hz, and
high/1200Hz) was presented at a 75 dB sound pressure level. Prior to the
testing, we ensured that each of the different pitches could be discrimi-
nated with at least 95% accuracy. The participants were instructed to
relate the target stimulus (i.e. the white circle) to the horizontal reference
line indicated by the CHANGE stimulus: When the change signal was a
low tone, the low line became the new reference line. Following the same
logic, the middle tone encoded the middle reference line, while the high
tone represented the upper reference line. Participants had to respond
with their left hand middle finger (“S” key) whenever the target was
located above the newly set reference line and had to respond with their
left hand index finger (“C” key) when the target was located below the
newly set reference line. If participants did not respond within 2000ms
after the onset of the CHANGE stimulus, the speed up sign appeared
above the stimulus array and stayed on the screen until the trial was
terminated by a button press. The reaction time (RT) was measured
relative to the presentation of this CHANGE stimulus.

Lastly, there were two SC conditions which varied the demands on
cognitive processes during multi-component behavior. In the first con-
dition, there was no Stop-Change delay (SCD0) so that STOP and
CHANGE stimuli were presented at the same time. The second SC con-
dition had a stimulus onset asynchrony of 300ms (SCD300) so that the
CHANGE stimulus always followed the onset of the STOP stimulus after
300ms. This important experimental manipulation was implemented for
the following reasons: According to the bottleneck model, response se-
lection processes depend on a restricted resource. The simultaneous
processing of the STOP and CHANGE in the SCD0 condition imposes high
demands on these selection processes, which leads to long RTs (Dippel
and Beste, 2015; Mückschel et al., 2014; Stock et al., 2014a; Verbruggen
et al., 2008) In the SCD300 condition, demands are comparably lower.
Because the STOP and CHANGE processes do not fully overlap in this
condition, response selection must occur in a serial/step-by-step fashion
(Dippel and Beste, 2015; Mückschel et al., 2014; Stock et al., 2014a;
Verbruggen et al., 2008).

2.2. Multi-component behavior mode and efficacy

In the stop-change paradigm outlined above, three task goals have
been shown to contribute to the behavioral performance (Verbruggen
et al., 2008): (i) responding to the GO signal, (ii) stopping with the stop
signal and (iii) responding to the change signal. Importantly, only the
SCD0 condition leaves a choice how to process STOP and CHANGE
associated processes (i.e. rather serially or in parallel), while the SCD300
condition enforces a rather serial processing because the STOP process is
finished by the time the CHANGE stimulus is introduced (Verbruggen
et al., 2008). In this context, it is important to consider that response
selection is subject to processing capacity limitations. If participants
choose to simultaneously process STOP- and CHANGE-associated task
goals in the SCD0 condition, reaction times on the CHANGE stimulus
increase because the two processes must share a limited capacity. If
participants however choose a strategy in which they process STOP- and
CHANGE-associated task goals in a rather serial step-by-step manner, the
STOP and CHANGE processes do not have to share a limited capacity.
This leads to relatively shorter CHANGERTs in the SCD0 condition than a
strategy in which STOP- and CHANGE-associated task goals are pro-
cessed simultaneously. In other words, multi-component behavior in the
highly demanding SCD0 condition becomes more efficient (i.e. CHANGE
responses become faster) when amore serial task set processing approach
is taken. If an inefficient processing strategy has been used in the SCD0
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condition, RTs are substantially longer than in the SCD300 condition,
which serves as a “baseline” condition due to the enforced serial pro-
cessing. If an efficient step-by-step processing strategy has been used in
the SCD0 condition, the RT are closer to those of the SCD300 condition.
The ratio of RT differences in the SCD0 and SCD300 conditions therefore
gives an estimate of an individual's the efficiency during action cascading
(Verbruggen et al., 2008):

slope ¼ RTSCD0 � RTSCD300

SCDSCD0 � SCDSCD300
¼ RTSCD0 � RTSCD300

�300

This slope value is calculated for each participant individually and
becomes steeper (i.e. yields more negative values) with increasing RT
differences between the two conditions. Therefore, a steeper slope in-
dicates a less efficient multi-component behavior.
2.3. EEG recording and processing

EEG was recorded from 65 Ag–AgCl electrodes using a QuickAmp
amplifier (Brain Products Inc.) at standard scalp positions against a
reference electrode located at FCz. The sampling rate was 1 kHz, which
was down-sampled off-line to 256Hz. During recording, all electrode
impedances were kept below 5 kΩ. Data processing started with the
application of a band-pass filter ranging from 0.5 to 18Hz (48db/oct).
This was followed by a manual inspection of the data to remove technical
artifacts. To correct for periodically recurring artifacts (pulse artifacts,
horizontal and vertical eye movements) an independent component
analysis (ICA; Infomax algorithm) was applied to the un-epoched data
set. Independent component showing these artifacts were discarded. The
number of ICs removed varied between 2 and 5 (mean¼ 3.2� 1.8).
Lastly, a secondmanual raw data analysis was run to remove any residual
artifacts and electrode FCz was topographically interpolated. Then, the
EEG data was segmented (stimulus-locked) with respect to the onset of
the STOP stimulus for the two SC conditions (i.e. SCD0 and SCD300
trials) (Dippel and Beste, 2015; Mückschel et al., 2014; Stock et al.,
2014a). Each of the segments started �2000ms before the onset of the
STOP stimulus (set to time point zero) and ended 2000ms thereafter. The
epoch length was chosen to allow a reliable estimation of the power of
low frequency (theta) oscillations. Within these segments, an automated
artifact rejection procedure was applied. The rejection criteria were a
value difference of more than 100 μV in a 200ms interval, activity below
0.5 μV in a 200ms interval. The artifact rejection procedure eliminated
~2.5% (�1.2) of all trials, with no statistically significant difference
between experimental conditions. To eliminate the reference potential, a
current source density (CSD, order of splines¼ 4, maximum degree of
Legendre polynomials¼ 10, default lambda¼ 1e-5) transformation was
applied (Nunez and Pilgreen, 1991). The CSD transformation works as a
spatial filter (Kayser and Tenke, 2015), which reduces the impact of
volume conduction. This helps to identify the electrodes that best reflect
neurophysiological (EEG) activity related to specific cognitive processes.
According to previous work using the same experimental paradigm
(Mückschel et al., 2014), a baseline correction was then set to the time
window from �900 till �700ms before STOP stimulus onset to obtain a
pre-stimulus baseline that is also prior to the onset of the GO stimulus
(which occurred on average 215ms� 9 before the STOP stimulus onset,
as indicated by the mean SSD). The methods on the add-on analysis of
event-related potentials (ERP) and source localization of ERP data is
shown in the supplemental material. Using the single-trial, base-
line-corrected data obtained after the EEG preprocessing steps, we con-
ducted a time-frequency decomposition applying Morlet wavelets (w) in
the time domain to different frequencies (f):

wðt; f Þ ¼ A expð�t2
�
2σ2t Þexpð2iπftÞ

where t is time, A ¼ ðσt
ffiffiffi
π

p Þ�1=2, σt is the wavelet duration, and i¼ ffiffiffiffiffiffiffi�1
p

:

For analysis and TF-plots, a ratio of f0/σf¼ 5.5 was used, where f0 is the
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central frequency and σf is the width of the Gaussian shape in the fre-
quency domain. The analysis was performed in the frequency range
0.5–18 Hz with a central frequency at 0.5 Hz intervals. The single-trial
wavelet-transformed data were subsequently averaged to calculate the
total (induced) wavelet power (Roach and Mathalon, 2008), which was
quantified at 6 Hz for theta frequency oscillations.

2.4. Small world network analysis

As outlined in the introduction, we focused on the theta frequency
band, i.e. on oscillations between 4 Hz and 8Hz, for the network con-
nectivity analysis. The procedure used to examine network connectivity
and small-world network analysis has been used previously in EEG data
(Wolff et al., 2017). To examine the 'communication' between all EEG
electrodes in terms of a 'network', we assessed the connectivity between
the electrodes. This was done using the strength of coherence (Peters
et al., 2013; Stam and van Straaten, 2012), which is probably the simplest
and most popular measure of “interaction” at a specific frequency (Nunez
et al., 1999, 1997). All electrodes were treated as nodes in the network
and connections (edges) between these nodes are defined as coherence
between all possible pairs of electrodes. For the calculation of the
coherence values, only the imaginary part of the coherence spectrum of
all possible pairs of nodes was used to effectively suppress spurious
coherence driven by volume conduction (Nolte et al., 2004).

This was done for all CSD transformed and segmented single trial data
for each condition, which were filtered for theta oscillations between
4 Hz and 8 Hz. The reason for applying this filter is that we were only
interested in low-frequency/high-amplitude neural oscillations (i.e. theta
oscillations) which were shown to organize activities across large spatial
distances and brain regions, especially during cognitive control (Cav-
anagh and Frank, 2014). While there are several ways to determine the
threshold, for instance based on some statistical parameterization or
previous observation in the literature, all of them remain arbitrary. The
threshold was applied to a matrix containing all (imaginary part of the)
coherence values of all single trials. This was done separately for each
individual. For the analysis of the coherence values, only the highest 15%
of each individual's coherence values were included in the analysis. This
approach is a compromise that is made to cope with two problems: On
the one hand, it makes sure that only electrodes with high coherence are
defined as being “connected” and are included in the analysis. On the
other hand, it also makes sure that enough connections are left to still
form an electrode connectome which may be considered as a network
(Wolff et al., 2017; Zink et al., 2018). A binary 65� 65 adjacency
network matrix (based on the 65 included electrodes) was then calcu-
lated with 1 representing an un-weighted and undirected connection
between any pair of electrodes and 0 representing no connection. In
order to study small world networks, the method by (Watts and Strogatz,
1998) was applied to each single-subject (Wolff et al., 2017; Zink et al.,
2018): Starting from a one-dimensional network, where each node in the
network is only connected to its k nearest neighbors on either side,
representing a ‘regular’ network with randomness ϐ¼ 0, a ring lattice
with N nodes of mean degree 2k is created. Next, more connections
(‘edges’) are randomly chosen to another random node with increasing
randomness (ϐ> 0). So, when ϐ¼ 0, no edges are rewired and the model
returns a ring lattice. In contrast, when ϐ¼ 1, all of the edges are rewired
and the ring lattice is transformed into a random network with N nodes
and mean node degree of 2k. According to the Watts and Strogatz model,
a network has small-world network properties when it demonstrates
properties from both lattice networks, with clustered interconnectivity
within groups of nodes sharing many nearest neighbors in common (high
clustering coefficient, ‘C’), and properties from random networks, rep-
resented by a short geodetic distance (average path length, ‘L’) between
any two nodes in the network. Thus, the balance of local segregation and
global integration in neural networks (‘small worldness’) can be
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quantified by C and L, respectively (Bassett and Bullmore, 2006). Regular
networks have a high C, but also a very high L. In contrast, random
networks have a low C and a low L. Hence, neither regular nor random
networks alone can explain the small world phenomenon (Watts and
Strogatz, 1998). For each subject, the average number of edges from one
node to all other nodes (degree, 2k), average shortest path length
(geodetic distance, Lreal) and average clustering coefficient (Creal) were
calculated. Corresponding to each individual's degree, completely
random (ϐ¼ 0) and completely regular (ϐ¼ 1) Watts Strogatz models
were created and Lrand and Crand and Clatt were computed. We analyzed
all small world values (ω) according to (Telesford et al., 2011), who
proposed a quantitative categorical definition of a small-world network
in line with the definitions of the original Watts-Strogatz model. In this
way, it can be statistically tested whether a network has small world
properties. The small-world value (SWV) formula is expressed by:

ω ¼ Lrand

L
� C
Clatt

In the formula, the index “rand” refers to a random network and the
index “latt” to a lattice network. Small-world values of ω are restricted to
the interval �1 to 1 regardless of network size. If ω is close to zero, it is
considered as small world. Positive ω values represent more random
properties, negative values indicate that a network has more regular or
lattice-like properties. The small-world metric ω (omega) proposed by
Telesford et al. (2011) compares network clustering to an equivalent lat-
tice network and path length to a random network, as Watts and Strogatz
originally described. In contrast to the standard application, where net-
works are interpreted as small-world when clustering is compared to a
random network, these are not small-world according to ω. The use of ω
may prohibit false positives, because Telesford et al. (2011) showed that
many systems originally thought to have small-world processing capabil-
ities may in fact not. Furthermore, as outlined in the methods section,
positive ω values represent more random properties, whereas negative
values indicate that a network has more regular or lattice-like properties.
These differential network characteristics cannot be captured by the
standard application by Watts and Strogatz, which can only determine
whether a network has a more small-world characteristics than others.
2.5. Single molecule array (SIMOA) analysis

After collection, serum samples were stored at �20 �C until neuro-
filament testing. Neurofilament-light chain (NF-L) measurement was per-
formed using the Simoa Human Advantage NF-Light singleplex Kit and
prepared as recommended in the manufacturer's instructions (Quartered,
Lexington, MA, Datasheet Quanterix: Simoa™ NF-Light® Advantage Kit).
The Simoa Human Advantage NF-L assay is a digital immunoassay for the
quantitative determination of NF-L and was ran on a Simoa HD-1 instru-
ment (Quanerix) using a 2-step Assay Neat 2.0 protocol (Wilson et al.,
2016). The antibodies and calibrators used in the assays have been
developed by Uman Diagnostics (Sweden) and described previously in
their plate-based ELISA (Petzold et al., 2010). There are more than 10,000
data points for these ELISAs and the antibodies have been adapted to
generate an ultra-sensitive Simoa assay (Kuhle et al., 2016a). These anti-
bodies recognize epitopes in the mid-domain of the NF-L chain. The Simoa
NF-L Advantage assay has been validated as fit-for-purpose assay and the
lower limit of quantification is 0.0178 pg/ml (Datasheet Quanterix:
Simoa™ NF-Light® Advantage Kit). Previous reports proofed that the
newly developed single-molecule array (Simoa) technique is the most
sensitive opportunity to detect NF-L even in lowest concentrations (Kuhle
et al., 2016a). Before starting measurement, 96-well-assay plate was pre-
pared and filled with calibrators, serum samples and controls at room
temperature (Quanterix). Capture antibody coated beads, biotinylated
detector antibody, streptavidin-beta-galactosidase, resorfurin



Fig. 2. Correlation between sNF-L levels and behavioral performance.
Serum concentrations of neurofilament light (sNF-L) are given on the x-axis in
pg per ml, with larger values indicating reductions in neuronal cytoskeleton
integrity. The slope of the SCD-RT function is provided on the y-axis, with larger
(i.e. more negative) values indicating reductions in the efficacy of multicom-
ponent behavior. As indicated by the regression line, behavioral performance
decreased with increasing sNF-L levels.
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beta-D-galactopyranoside and buffers were loaded onto the Simoa HD-1
Analyzer. Assay was run using the 2-step Neat protocol. In the 2-step
immunoassay, target antibody coated paramagnetic beads were com-
bined with sample and biotinylated detector antibody in the same incu-
bation step. Target molecules present in the sample were captured by the
antibody coated beads and bound with the biotinylated antibody detector
simultaneously. Calibrators (8 calibrator points) and diluted serum sam-
ples (dilution 1:4) were measured in duplicates. Sample dilution was
calculated and done by the instrument. Calibrators ranged from 0 to
500 pg/ml. Predefined control measurements ensured concentration in
expected range and proofed validity of the calibration curve and testing
procedure.

2.6. Statistics

Separate repeated-measures ANOVAs were used to analyze the
behavioral and neurophysiological data. “SCD condition” (SCD0 vs.
SCD300) was always used as a within-subjects factor. For the analyses of
ERPs, “electrode” was used as an additional within-subjects factor,
whenever applicable. Linear correlation analyses and regression analyses
were conducted to assess the function nexus between sNF-L values and
the RT slope as well as the theta ω slope. Age was included in all
regression analyses which yielded significant results. We further used the
PROCESS toolbox for SPSS 24 (Hayes et al., 2017) to conduct a mediation
analysis with sNF-L and the theta ω slope as potential predictors of the RT
slope. All reported results underwent Greenhouse-Geisser correction and
post-hoc tests were Bonferroni-corrected, whenever necessary. For all
descriptive statistics, the standard error of the mean (SEM) is given as a
measure of variability.

3. Results

3.1. Lower sNF-L concentrations are associated with more expedient
behaviour

As done in previous studies using the stop-change paradigm, we
focused our behavioral analysis on response times (RTs) in correct trials
(Mückschel et al., 2014; Stock et al., 2014a). In the task, participants
were required to interrupt an ongoing response in a third of trials and
change to an alternative response. In the other trials a simple choice
response was required that was not interrupted by a STOP stimulus.

The mean and the standard error of the mean (SEM) are given for the
descriptive statistics in the entire results section. The mean reaction time
in simple GO trials was 494ms (�12). The mean stop signal delay (SSD,
i.e. the variable delay between GO and STOP stimulus onset in SC trials)
was 215ms (�9) and the mean stop signal reaction time (SSRT) was
223ms (�17). The SSRT was measured according to Logan et al. (1984),
whose method was also used in the original publication of this task
(Verbruggen et al., 2008). Importantly, the SSRT is shorter than the
stop-change delay in the SCD300 condition, which demonstrates that the
STOP process was indeed finished before the CHANGE stimulus was
presented. This proves that a step-by-step processing of task goals was
indeed enforced in the SCD300 condition (Verbruggen et al., 2008).
Furthermore, the RTs of CHANGE responses were on average signifi-
cantly shorter in the SCD300 condition (893ms� 25) than in the SCD0
condition (1073ms� 23) (t(59)¼ 22.82; p< .001). The slope of the
SCD-RT function, which reflects the RT difference between the two SCD
condition was �0.59 (�0.02), which is in line with previous results
(Mückschel et al., 2014; Stock et al., 2014a; Verbruggen et al., 2008). A
high slope value indicates that response selection on CHANGE trials is
less efficient, because subjects with a high slope value try to process
STOP and CHANGE task goals in “parallel”. A smaller slope value shows
that even in the SCD0 condition subject tend to process STOP and
CHANGE processes separately (in a “step-by-step”, serial fashion), even
though both stimuli are presented at the same time. The distribution of
the slope value is shown in supplementary Figure 3.
134
The mean sNF-L level was 3.31 pg/ml (�0.18), which is in line with
other studies in healthy samples (Disanto et al., 2016; Gaiottino et al.,
2013). In line with the hypothesis, a correlation analysis revealed a
positive correlation between our subjects’ sNF-L concentrations and their
behavioral slope value, i.e. lower sNF-L levels were correlated with a
flatter slope of the SCD-RT function (r¼ 0.660; R2¼ 0.43; p< .001)
(refer Fig. 2).

Given that sNF-L levels increase with age (~2.2% in each year)
(Disanto et al., 2017; Vågberg et al., 2015), we also examined whether
age affected the observed correlation. Using “age” in a linear regression
model, we found that the factor age was not a significant predictor of
performance (t¼ 0.54; p> .4), while “sNF-L level” remained predictive
of the slope value (t¼ 6.63; p< .001) (F(2,56)¼ 43.96; p< .001). Since
sNF-L data collection and the other experimental procedures testing were
always carried out at the identical time, circadian rhythms cannot affect
the results.
3.2. The architecture of theta-oscillation networks establishes the nexus
between sNF-L concentrations and behavioral performance

The P3 ERP component, which has been shown to reflect behavioral
inhibition and change processes in the stop-change paradigm (Dippel and
Beste, 2015; Mückschel et al., 2014; Stock et al., 2014a), is shown in
Fig. 3A.

The statistical analysis (refer supplementary material) revealed no
correlations with sNF-L data (all r < 0.095; p > .3) and replicated the
results of previous studies on SCD condition effects (refer supplementary
material). However, the main neurophysiological focus of this study were
modulations of theta oscillations: The time-frequency plots for electrode
Cz are shown in Fig. 3B. A dependent samples t-test for the theta fre-
quency power at 6 Hz in SC trials showed that theta frequency power was
higher in the SCD0 condition (3.86� 0.02) than in the SCD300 condition
(3.66� 0.02) (t(59)¼ 6.94; p< .001). Theta power was not correlated
with sNF-L levels (all r < 0.195; p > .3). As outlined in the introduction
and methods sections, the small world value (ω) (Telesford et al., 2011)
provides information about the architecture of theta oscillation network.
The network plots of theta frequency oscillations in the SCD0 and the
SCD300 condition are shown in Fig. 3C. Regarding the small-world
values (ω) in the theta frequency band, we found larger ω (i.e. less
small-world like) values in the SCD0 condition (0.67 ω� 0.005) than in
the SCD300 condition (0.60 ω� 0.09) (t(59)¼ 12.11; p< .001). The
small-world values in the SCD0 and the SCD300 condition were not



Fig. 3. Neurophysiological correlates of cognitive control and their relation to behavioral and sNF-L data.
(A) The P3 ERP component at electrode Cz is shown for the SCD0 condition (orange) and the SCD300 condition (blue). Time point zero denotes the time point of STOP
stimulus presentation. Please note that the onset of the CHANGE stimulus was at time point 0 in the SCD0 condition and at 300ms
in the SCD300 condition. The scalp topography plots are given for the P3 peak in each condition (red colours denote positive values, blue colours denote negative
values). The sLORETA plots show the source of condition-driven P3 amplitude differences (SCD0>

SCD300) in the medial frontal cortex (colour bar denotes critical t-values corrected for multiple comparisons). Even though this ERP has repeatedly been shown to
reflect behavioral performance differences in the stop-change task, it was not related to sNF-L levels. (B) Time frequency plots showing the total power in the SCD0 and
the SCD300 condition. The red-shadings denote the strength of the power. Stronger fronto-central theta activity was evident in the SCD0 condition. Yet, the power of
theta oscillations was also not related to sNF-L levels. (C) Theta oscillation networks for the different experimental conditions (SCD0 and SCD300). The imaginary part
of the coherence is plotted as edges between the electrodes (nodes). The colour bar denotes the strength of the imaginary part of the coherence. The networks are
shown for two thresholds indicating the 15% strongest connections (threshold 85%) and the 5% strongest connections (threshold 95%). Please note that the graph is
not based of the traditional “topographic” map. Instead, the location of single electrodes vary (dependent on the results). The reason why there are so many in-
terconnections in the plot is that these network represent the group mean of a condition. If for instance subject A has a weakly interconnected electrode X (e.g. it only
has connections to two other electrodes) and subject B has a very highly interconnected electrode X (e.g. it has connections to 60 other electrodes), the mean
connectivity of electrode X to other electrodes can become higher, the more subjects are included in the analysis. Individual connectivity plots are therefore much less
interconnected and the many connections emerge because the group mean is shown. (D) Scatterplot showing the correlation between the slope of the SCD-RT function
and the slope in parameter ω. (E) Scatterplot showing the correlation between serum concentrations of neurofilament light (sNF-L) and the slope in parameter ω.
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significantly correlated (r¼ 0.009; p> .472)3. There was also no signif-
icant correlation between small world values (ω) and the power of theta
oscillations in the SCD0 and the SCD300 conditions (r¼ 0.11; p> .50).
The degree of change in ω (i.e. the slope of ω between the two SCD
conditions, which was formed in the same way as the behavioral slope
value) was correlated with the slope of the behavioral SCD-RT function
3 It needs to be stressed that the small-world parameter is shown to be a
considerable reliable parameter in the current study. We assessed this aspect by
calculating the values only over ‘odd’ trial numbers and ‘even’ trial numbers.
There was no difference between these values (p> .6) and the values were
highly correlated (r¼ 0.852; p> .001). This shows that even though the pro-
vided ω values are point measurement, they are likely to present reliable esti-
mates of the true values. This is further corroborate by the small SEMs for the ω
values.
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(r¼ 0.769; R2¼ 0.59; p< .001) (refer Fig. 3D). The distribution of the
slope value for small world values (ω) is shown in supplementary
Figure 3. As can be seen in Fig. 3D, a smaller slope (i.e. a difference
between SC conditions) in parameter ω was associated with a smaller
slope in the reaction time data (i.e. more expedient multicomponent
behavior). Importantly, sNF-L levels were correlated with the slope of ω
(r¼ 0.758; R2¼ 0.56; p< .001) (Fig. 3E): The smaller sNF-L levels, the
smaller the decrease in small-world-ness (i.e. the increase in the ω value)
from the SCD300 to the SCD0 condition. Together, sNF-L level, behav-
ioral performance (reflected by the RT slope value) and the architecture
of the theta oscillation network (reflected by the ω slope value) show
close inter-correlations. We therefore calculated a linear regression
model to account for these inter-dependencies. Following the suggestions
by (Hayes et al., 2017), we used the PROCESS toolbox for SPSS 24 which
also allows conducting a mediation analysis to test the hypothesis that
the neurophysiological network architecture reflects an underlying



Fig. 4. Results from the statistical mediation analysis.
The interrelation of sNF-L level, the slope of the SCD-RT function and the slope
in parameter ω are shown. There is a direct effect of sNF-L levels on the slope of
the SCD-RT function (orange line), but also an even stronger indirect effect (blue
line), which is mediated by the parameter ω slope. The scatterplots show the
correlations.
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mechanism via which molecule-level variations in axonal integrity and
the neuronal cytoskeleton affect the efficiency of multi-component
behavior (refer Fig. 4).

Calculating the linear regression model with sNF-L level and the slope
of ω as predictors of the slope of the SCD-RT function revealed a signif-
icant regression model (F(2,56)¼ 59.85; p< .001; R2¼ 0.68;
MSE¼ 0.012). Within this model, both sNF-L (b¼ 0.041; t¼ 2.44;
p¼ .017; 95% confidence bounds¼ 0.007 till 0.073 [2000 bootstrap
samples]) and slope of ω (b¼ 0.39; t¼ 5.11; p< .001; 95% confidence
bounds¼ 0.239 till 0.548 [2000 bootstrap samples]) were shown to be
significant predictors of the SCD-RT slope. There was evidence for a
direct effect of sNF-L levels on the slope of the SCD-RT function (ef-
fect¼ .041; 95% confidence bounds¼ 0.007 till 0.073 [2000 bootstrap
samples]. Importantly, there was also evidence for an indirect effect of
sNF-L levels on the slope of the SCD-RT function (effect¼ .064; 95%
confidence bounds¼ 0.038 till 0.086 [2000 bootstrap samples], showing
that the slope of ω significantly mediated the effects of sNF-L levels on the
slope of the SCD-RT function (refer Fig. 4). Of note, the indirect effect was
larger than the direct effect. When using “age” as an additional variable
in the mediation analysis (similar to the analysis of the behavioral data),
the inclusion of this variable did not change the pattern of results.

Further analyses underline the specificity of these results. We further
examined small world network characteristics in the alpha frequency
band (i.e. between 8 and 12 Hz) (refer supplemental Figure 1). Modu-
lations in the alpha frequency band are known to be related to variation
in P1 and N1 ERPs indexing attentional selection processes (Freunberger
et al., 2008; Herrmann and Knight, 2001; Luck and Kappenman, 2013).
The small-world value (ω) did not differ between the SCD0 condition
(0.57 μV/m2� 0.09) and the SCD300 condition (0.59 μV/m2� 0.07)
(t(59)¼�0.98; p> .3). There were also no correlations between the
slope of ω in the alpha frequency band and the slope of the SCD-RT
function (r¼�0.05; p> .70) or sNF-L levels (r¼�0.12; p> .56). In
line with this, we did also not find any correlations of the P1 and N1 ERP
amplitudes with sNF-L data (all r < 0.099; p > .3) (see supplementary
material for results and supplementary Figure 2). This lack of effects in
attention-related measures further underlines the specificity of results for
correlates of cognitive control.

4. Discussion

In the current study, we examined the functional relevance of non-
pathological, molecule-level variations in the integrity of the neuronal
cytoskeleton for multicomponent behavior and the neurophysiological
processes that most likely mediate this nexus. Since multi-component
behavior as one instance of cognitive control can be seen as the result
of information integration in a wide-spread functional neuroanatomical
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and neurophysiological network (Duncan, 2010; Gohil et al., 2015;
Mückschel et al., 2014; Stock et al., 2017), especially this kind of task
may be suitable to examine the relevance of cytoskeletal integrity for
cognitive control processes. Molecule-level variations in scaffolding
proteins (i.e. sNF-L) were assessed with the help of a SIMOA assay and
expected to be correlated with behavioral performance measures (i.e. the
RT slope value) as well as neurophysiological correlates of cognitive
control (i.e. the small-world-ness of theta oscillations, as reflected by the
ω slope) (Mückschel et al., 2014; Verbruggen et al., 2008). Specifically,
we expected that both the behavioral and neurophysiological measures
should be increasingly impaired (i.e. be characterized by steeper slope
values) in case of decreasing neuronal integrity (i.e. increased sNF-L
values) (Disanto et al., 2016, 2017; Kuhle et al., 2016c; Teunissen and
Khalil, 2012).

First and foremost, we found a strong correlation between sNF-L
values and the behavioral RT slope values, which explained ~43% of
all observed behavioral variation within the sample. It can therefore be
rather safely concluded that non-pathological molecule-level variations
in the integrity of the neuronal cytoskeleton are a major determinant of at
least some aspects of multicomponent behavior. In line with other studies
using the stop-change paradigm, we found that responses to the CHANGE
stimuli were longer in the SCD0 condition than in the SCD300 condition.
This is because two response options simultaneously demand processing
resources in the SCD0 condition, but not in the SCD300 condition, where
serial task goal processing is enforced by the stop-change delay. The
difference between the two SC conditions is reflected by the RT slope
value, where steeper/larger slope values reflect (relatively) longer RTs in
the SCD0 condition and thus indicate less expedient multicomponent
behavior (Mückschel et al., 2014; Verbruggen et al., 2008). sNF-L con-
centrations between ~0.9 and ~8 pg/ml predicted RT differences of
several hundred milliseconds, as reflected by the RT slope value (which
ranged from ~0.1 to~�1: a value of 0 reflects no differences, while a
slope of �1 reflects a 300ms RT difference between the SCD0 and
SCD300 condition). Given that (relatively) higher sNF-L concentrations
were associated with steeper slopes, the data suggest that a high integrity
of the neuronal cytoskeleton predicts a high expedience of multicom-
ponent behavior.

Importantly, the neurophysiological data provided insights into the
mechanism that mediates the effect of non-pathological, molecule-level
variations in the integrity of the neuronal cytoskeleton on multicompo-
nent behavior. It was shown that sNF-L levels were correlated with the
parameter ω (i.e. the small world value) of theta oscillation-based net-
works and that the latter was also correlated with behavioral
performance:

Specifically, the correlation between sNF-L levels and the slope of
theta small-world values (ω) explained 56% of all observed theta ω
variation within the sample. Given a correlation value of more than 0.5, it
can be rather safely concluded that non-pathological variation in the
integrity of the neuronal cytoskeleton is a major determinant of the
neuronal network efficiency reflected by theta-associated small-world
network properties. The small-world value of theta oscillations was
generally larger in the SCD0 condition, which reflects a reduction in
small-world characteristics/a more random network organization (Watts
and Strogatz, 1998) and therefore a reduction in network efficiency, as
compared to the SCD300 condition. It has been suggested that a
small-world-like network architecture enables an efficient separation and
functional integration of information, because this kind of network ar-
chitecture shows a dense local interconnectivity and short average path
length, thus linking nodes in a short and efficient way (Achard and
Bullmore, 2007; Bassett and Bullmore, 2006; Bullmore and Sporns,
2009). It therefore seems that there is on average a more efficient sep-
aration and functional integration of information in the SCD300 condi-
tion than the SCD0 condition. Based on this, we hypothesized that the
theta slope reflects or maybe even induces differences in task goal pro-
cessing and the resulting behavior. In line with this, we found a strong
positive correlation between the slope of the theta-associated ω
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parameter and the slope of the SCD-RT function, which explained 59% of
the behavioral variability: The less ω increases (i.e. loses it small-world
like properties) in the SCD0 condition, the better (more efficient)
multi-component behavior will be (as reflected by a flatter RT slope).
This suggests that efficient multi-component behavior relates to the ef-
ficiency of information processing within theta-mediated oscillation
networks. Given that the SCD300 condition enforces a step-by-step/serial
processing, which is less likely to be found in the SCD0 condition, this
further suggests that the small-world characteristics reflect demands on
response selection processes and the load in the response selection
bottleneck during cognitive control.

In order to further investigate the interrelation of neuronal cyto-
skeletal integrity, theta network efficiency and multicomponent
behavior, we conducted a mediation analysis that allows to dissociate the
direct and indirect effects of sNF-L variation onto our behavioral RT slope
measure. The results revealed that there was not only a direct effect of
sNF-L onto the RT slope, but also evidence for an indirect effect; i.e. that
small-world network characteristics of theta oscillations mediated the
effect of sNF-L levels on behavioral performance. Most noteworthy, the
indirect mediation via theta oscillations was about 1.5 times larger than
the direct effect of sNF-L on the behavioral slope measure. This strongly
suggests that theta network efficiency might indeed provide a crucial
functional link between molecular changes and multicomponent
behavior and explain how even molecule-level variations in markers of
neuronal cytoskeleton integrity may effectively modulate behavior in
otherwise healthy, young adults. In this context, it should be noted that
the observed effects seem to be quite specific, as we found no correlation
of sNF-L and any other of the assessed neurophysiological measures.
There were no correlations of sNF-L with attentional ERPs or small-world
values (ω) within the alpha band. Most importantly, we also failed to find
a correlation between sNF-L values and the amplitude of the fronto-
central P3 ERP or total fronto-central theta power. In our sample, both
measures (i.e. P3 ERP and fronto-central theta power) increased in the
cognitively challenging SCD0 condition, which is well in line with pre-
vious studies in the stop-change paradigm (Mückschel et al., 2014; Stock
et al., 2014a). In the context of the stop-change-paradigm, the P3
amplitude is thought to reflect both behavioral inhibition and change
processes (Dippel and Beste, 2015), which matches the common finding
that amplitudes are increased in case of intensified inhibitory control
processes (Mückschel et al., 2017, 2014) and response inhibition efforts
(Huster et al., 2013). The increased theta band power in the SCD0 con-
dition most likely reflects a higher need for control (Cavanagh and Frank,
2014; Dippel and Beste, 2015) when the STOP and CHANGE stimuli are
presented simultaneously so that subjects likely experience some degree
of interference between the two task goals. But while P3 amplitudes and
theta power have been shown to be modulated by many other factors
such as dopamine, cytokines, or alcohol (Beste et al., 2015; Stock et al.,
2014a, 2014b), this was definitively not the case in our study. Hence,
there seems to be a functional dissociation between the sheer amplitu-
de/power of a given neuronal activation and the efficiency with which
information is being processed within a network. Only the latter seems to
be modulated by the integrity of the neuronal cytoskeleton, but this
functional nexus explains a staggering amount of behavioral performance
variation, especially given that we only assessed healthy variation at the
molecule level. This finding is of high relevance for research in clinical
contexts using NF-L, in which the neurofilament parameter may be used
for biomarker purposes since there are strong links between NF-L and the
integrity of white matter structure as shown in studies on demyelinating
diseases (Boesen et al., 2018; Khalil et al., 2018; Kuhle et al., 2016b,
2017; Melah et al., 2016). The current results show that even within a
healthy control sample strong variations in behavioral or neuropsycho-
logical performance can be explained by tiny variations in sNF-L con-
centrations. Within a clinical context, it will therefore be necessary to
consider the impact of physiological variations in more detail. For that it
will be important to consider that the individual sNF-L profile may
change considerably and may therefore reflect a variable ‘state marker’
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that may affect neuropsychological performance. The variability and
effects thereof need to be considered in studies examining the longitu-
dinal profile of sNF-L variation together with longitudinal variations in
cognitive performance. Future studies shall also consider other cognitive
processes, including attentional selection functions. In the current study,
attentional selection processes were not modulated by sNF-L concentra-
tions. The possible reason for this is that attentional selection processes
do not seem to be important for performance in this task (i.e. explain
behavioral variations). Rather, it the integration of sensory information
subsequent to attentional selection stages that is of importance (Gohil
et al., 2017, 2016; Stock et al., 2017). This is also corroborated by data
from studies populations with attentional deficits (Bluschke et al., 2018)
and elderly people with otherwise diminished attentional capacities
(Stock et al., 2016).

In summary, we found compelling evidence that slightest, non-
pathological variations in the structural integrity of the neuronal cyto-
skeleton strongly modulate cognitive control processes that are impor-
tant for everyday activities. We could further show that the architecture
and efficiency of theta-oscillations networks (rather than signal strength/
power) reflects a mechanism that establishes the relationship between
structure and function. It hence seems that the efficiency/small-world
architecture of theta oscillations might provide an important missing
link which helps to explain and better understand how diffuse and
seemingly miniscule changes in neuronal integrity may lead to reduced
or even impaired cognitive functioning.
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