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Abstract
We present a new methodology to partition different sources of behavior change
within a selectionist framework based on the Price equation—the multilevel model of
behavioral selection. The multilevel model of behavioral selection provides a theoreti-
cal background to describe behavior change in terms of operant selection. Operant
selection is formally captured by the covariance-based law of effect and accounts for
all changes in individual behavior that involve a covariance between behavior and
predictors of evolutionary fitness (e.g., food). In this article, we show how the
covariance-based law of effect may be applied to different components of operant
behavior (e.g., allocation, speed, and accuracy of responding), thereby providing
quantitative estimates for various selection effects affecting behavior change using
data from a published learning experiment with pigeons.
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INTRODUCTION

Operant learning has repeatedly been characterized as
a process that works analogous to natural selection
(Broadbent, 1961; Campbell, 1956; Gilbert, 1970;
Herrnstein, 1964; Palmer & Donahoe, 1992; Pringle,
1951; Skinner, 1966; Thorndike, 1900). Whereas in
natural selection, species adapt to the environment as
a result of the fitness consequences of inheritable
traits, operant selection consists of individuals adapt-
ing to specific contexts as a result of the consequences
of repeatable actions. Skinner (1981) proposed that
both processes should be subsumed under the common
explanatory mode of selection by consequences.

Although the conceptual framework of selection by con-
sequences has a long tradition in behavior analysis and
remains a popular narrative (e.g., Baum, 2023; Becker,
2019; Donahoe, 2011; Donahoe et al., 1993; Hull
et al., 2001; McDowell, 2013, 2023; Simon, 2020; Simon &
Hessen, 2019), it seems to have had few effects on the actual
practices of many behavior analysts (but see McDowell,
2019, and Li et al., 2018). One possible reason for this gap
between theory and practice may be that operant selection
is sometimes used as a mere synonym for what is tradition-
ally called “reinforcement.” Of course, adopting the

language and vocabulary of evolutionary biology alone
does not add much to the theoretical foundations of the
experimental analysis of behavior. To be useful for the
development of substantive theory, the conceptual frame-
work of operant selection needs to be scrutinized and for-
malized such that it becomes more than a loose analogy.
Given such a formal account of operant selection, methodo-
logical implications may be derived that might eventually
affect the way behavior analysts frame their experiments.

In this article, our goal is to provide a first building
block for a methodology of behavior analysis that
builds on the conceptual framework of operant selec-
tion. In particular, we seek to estimate the amount of
selection in different components of operant behavior.
To reach this objective, we provide a coherent theoreti-
cal background for operant behavior that builds on the
concept of selection by consequences (Skinner, 1981).
We start with an introduction to the selectionist
account of operant behavior and its formalization
within the multilevel model of behavioral selection
(MLBS; Borgstede & Eggert, 2021). Second, we use
the MLBS to develop a methodological approach that
allows for the empirical estimation of operant selection
by means of theory-based modeling. Third, we apply
our methodology to derive the amount of operant
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selection on different components of behavior using
training data from a published pigeon experiment.
Finally, we discuss the implications of our approach
with respect to behavioral selection theory and poten-
tial practical applications of the method.

BEHAVIORAL SELECTION THEORY

The principle of operant selection was initially formalized
by Baum (2017) and further developed by Borgstede and
Eggert (2021), who integrated individual-level behavioral
selection with population-level natural selection within
the MLBS. The MLBS builds on the abstract description
of selection processes by means of the Price equation
(Price, 1970, 1972). The Price equation describes selection
as the result of the covariance between the individual
values of a quantitative character (e.g., an inheritable
trait, such as size) and individual evolutionary fitness
(i.e., the contribution of an individual to the future popu-
lation). A positive covariance is associated with a positive
change in mean character value (i.e., selection results in a
higher average character value), whereas a negative
covariance indicates a negative change (i.e., selection
results in a lower average character value). In other
words, character values that are statistically related to
evolutionary fitness are selected and thus alter the popu-
lation average.

In the Price equation, all other sources of change
(i.e., those that do not refer to selection of the characteris-
tic of interest) are subsumed in a residual term. This term
has different interpretations depending on the context.
For example, when applied to the evolutionary change of
gene frequencies, the residual term captures the effects
of imperfect transmission (i.e., mutation and recombina-
tion). When applied to phenotypic change over genera-
tions (e.g., body weight or behavioral traits), the term
may capture environmental factors influencing the
phenotype (Luque & Baravalle, 2021). The Price equa-
tion provides a mathematical description of all selection
processes, without relying on the specific mechanisms of
variation, selection, and transmission (Luque, 2017). In
fact, in its most general form, the partitioning of change
into a selection and a nonselection term is merely a math-
ematical identity. Therefore, it is more of a formal defini-
tion of what is meant by selection rather than a statement
about hypothetical mechanisms. The benefit of such a
definition is that it provides a consistent conceptual back-
ground that can then be used to construct more specific
models of evolutionary change.

In the MLBS, the Price equation framework is
applied to a population of individuals that vary in a
certain quantitative behavior (such as average number
of pecks emitted in the presence of certain environmen-
tal cues). At the population level, the covariance term
refers to the effects of natural selection on average
behavior tendencies of the population and the residual

term captures the average change within individuals.
The main contribution of the MLBS is that it formally
links this latter within-individual change to the general
framework of the Price equation. Following the ratio-
nale that individual changes in behavior can also be
explained through selection by consequences, the
MLBS extends the Price equation by applying the
same covariance principle at the within-individual
level. Here, the population average in behavior is not
calculated over different individuals but over recurring
instances of the same context (e.g., experimental tri-
als). Behavior change, such as an increase or decrease
in key-pecking rate, averaged over a longer period, is
described according to the covariance partitioning
from the Price equation. However, the criterion of
selection is not individual fitness itself (in terms of a
direct contribution to the future population) but statis-
tical predictors of individual fitness. In other words, at
the within-individual level, behavior is not selected by
means of reproduction or survival (in fact, if the indi-
vidual dies, all of its behavior immediately ceases) but
by events that predict expected change in evolutionary
fitness (Borgstede, 2020, 2024). For example, food is
generally a positive predictor of evolutionary fitness
because it raises the probability of survival and, thus,
future reproduction. Conversely, physical threat is a
negative predictor of evolutionary fitness because it
lowers the chances of survival and future reproduction.
The concept of a fitness predictor is largely equivalent
to what Baum (2012) calls a “phylogenetically impor-
tant event.”

The conceptual framework of the MLBS allows us
to describe behavioral selection at the individual level
by means of a within-individual covariance between
behavior in recurring contexts and its consequences in
terms of statistical fitness predictors.1 Similar to the
process of natural selection, behaviors that covary
with events that signal a change in expected evolution-
ary fitness are selected, which in turn changes the aver-
age behavior of the individual. Following the MLBS,
the amount of behavior change due to selection corre-
sponds to the covariance between behavior and fitness
predictor, weighted by the slope of the fitness function
of the fitness predictor. Formally, the amount of
behavior change due to within-individual selection can
be expressed by the following equation (Borgstede &
Eggert, 2021):

Δsb¼ βwpCov b,pð Þ: ð1Þ

1Note that statistical fitness predictors are not limited to events that directly
increase fitness (such as mating or feeding) but also include indirect predictors of
fitness, such as information about consistent cues for the availability of food
(Anselme, 2022; Fortes et al., 2016; McDevitt et al., 2016; Zentall, 2016).
Parameters that control information seeking might also be relevant predictors of
evolutionary fitness, even if their influence may be less direct (e.g., Inglis
et al., 1997; also Borgstede, 2021).
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In Equation 1, b designates a quantitative behavior
(such as the amount of key pecking in a recurring con-
text) and Δsb corresponds to the within-individual change
in average behavior due to selection. The value p is a
quantitative fitness predictor, and Cov b,pð Þ is the covari-
ance between the behavior and the fitness predictor.
Finally, βwp is the slope of the function relating the fitness
predictor p to the actual fitness w.

Just like the original Price equation, the MLBS intro-
duces a nonselection term that captures all other sources
of behavior change. Designating the overall change in
average behavior as Δb, the within-individual behavior
change can now be expressed as the sum of a selection
term and a nonselection term δ:

Δb¼Δsbþδ: ð2Þ

This equation is called the covariance-based law of
effect (CLOE).2 The CLOE can be regarded as a funda-
mental principle of behavior in that it captures the
essence of behavioral selection by partitioning the overall
change in behavior into a selection component and a
nonselection component (Borgstede & Luque, 2021). The
selection component largely corresponds to what is
traditionally called reinforcement (i.e., contingency-based
effects of behavioral consequences), whereas the nonse-
lection term subsumes all other sources of behavior. Note
that Equation 2 is valid for any combination of fitness
predictors and behavioral measures. Therefore, instead of
absolute counts of pecking and food delivery, relative
amounts of pecking of behavior over two options (“allo-
cation”) may be used. Likewise, additional behavioral
parameters may equally be treated as potential targets of
selection, such as peck frequency (“speed”) or the average
success rate of pecking (“accuracy”). In the following sec-
tion, we use the MLBS as a starting point for a theory-
based approach to quantifying selection as a source of
within-individual behavior change.

FUNDAMENTAL PRINCIPLES, MODELS,
AND MEASUREMENT

At a theoretical level, the MLBS accounts for a great range
of behavioral phenomena that are difficult to explain using
traditional stimulus–response theories (Borgstede, 2021;
Borgstede & Eggert, 2021; Borgstede & Luque, 2021) such
as the blocking effect (Kamin, 1969), operant selection by
means of rare behavior (Premack & Premack, 1963), the
establishment of effective contingencies through response
deprivation (Timberlake & Allison, 1974), the relation
between operant selection and information seeking (Berlyne,
1957; Hendry, 1965), and various deviations from matching
(Davison &McCarthy, 2016).

However, it is less obvious how the MLBS might be
applied to actual empirical data from behavioral experi-
ments. The reason for this gap between theoretical explana-
tion and empirical application lies in the nature of the Price
equation. Because the Price equation is a mathematical
identity, it makes no empirically testable predictions per se.
Consequently, a fundamental theoretical principle such as
the CLOE cannot itself be put to empirical test. The CLOE,
like all fundamental theoretical principles, is best understood
as a formalization of the conceptual framework used in
the underlying theory. In other words, the CLOE tells us
what exactly is meant by operant selection and, in doing
so, provides the conceptual groundwork for more specific
models that may then be applied to empirical data
(Borgstede & Luque, 2021; Killeen, 2023).

Although the idea that a fundamental theoretical
principle itself has no empirical content may seem at odds
with the foundations of empirical science, it is in fact the
rule rather than the exception. For example, some of
the most fundamental “laws” of behavior are actually
true by definition (Killeen, 1972). The same holds for
fundamental principles in other sciences, such as physics.
For example, Newton’s second law of motion (F ¼ma)
alone says nothing about any particular physical system.
It is only through the construction of specific models by
means of auxiliary assumptions and empirically derived
regularities that concrete applications become possible
(Borgstede & Eggert, 2023). In other words, fundamental
laws provide the theoretical backbone of more specific
models that may then be applied to actual empirical data.
Some of these applications may serve as critical experi-
ments in the evaluation of the theory as a whole. Others
may exploit the theory by estimating hitherto unknown
model parameters. Such latter applications often do not
question the theory itself but use it to infer the specific
values of one or more theoretical entities in a given context.
A well-known example in behavior analysis consists of using
the generalized matching law to estimate the bias and sensi-
tivity parameters in a given context (Baum, 1974). Applica-
tions that seek to infer the values of theoretical entities may
not only provide useful practical information but also form
the foundation of theory-based measurement (Borgstede &
Eggert, 2023). The purpose of the following section is to
provide a corresponding methodology for the estimation of
operant selection from behavioral experiments.

MODEL-BASED INFERENCE OF
OPERANT SELECTION

Although the partitioning of change into selection and non-
selection components by means of the Price equation is
always possible at a theoretical level, empirical applications
require specific models for the dynamics of change. Estima-
tion of selection effects becomes possible by comparing
observed data to the predictions from such models. The
basic rationale behind this approach consists of constraining

2See the Appendix for a mathematical derivation of the CLOE from the
elementary Price equation.

MODEL-BASED ESTIMATES FOR OPERANT SELECTION 3
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a specific model such that it predicts what would be
expected in the absence of selection and contrasting this pre-
diction with the actual empirical observations. Conse-
quently, an empirical application of the MLBS requires a
model of the specific conditions that generated the observed
behavioral data. In particular, the model needs to account
for the covariance between a behavior and a fitness predictor
in a given context (e.g., a specific behavioral experiment).

As outlined in Borgstede and Luque (2021), the theoret-
ical covariance between an observed behavior and a quanti-
tative fitness predictor can be obtained from the feedback
function of a reinforcement schedule. Moreover, the quanti-
tative behavior itself (and, consequently, behavior change)
can be observed over several repeated experimental trials.
Given the feedback function of the target behavior in a
specified context, the CLOE may then be applied to empiri-
cal data. If the goal is to obtain quantitative values for
selection, one can use the model to calculate the amount of
operant selection as defined in the MLBS. Technically,
selection estimates are calculated using a constrained model
(or null model) that is identical to the model that describes
the observed behavior, except for the part that is responsible
for selection to occur (Okasha & Otsuka, 2020). Practically,
this means to apply a minimal change to the model parame-
ters such that the covariance term becomes zero (because a
zero covariance implies zero selection).

Mathematically, there are several ways to ensure that
the covariance term in the CLOE is zero. However, the
most plausible candidate for our null model is certainly
that the fitness predictor (e.g., the amount of food
received per time) is set equal across trials. For example,
if we conduct an experiment with two consecutive trials,
we may observe behavior that yields three food items per
minute in Trial 1 and five food items per minute in Trial
2. The null model would use the feedback function from
Trial 2 to calculate the behavior that would have resulted
given the individual had received the exact same amount
of food items per minute as in Trial 1 (i.e., only three
food items per minute instead of five). Conditional on the
MLBS, the difference between the actually observed
behavior in Trial 2 and the behavior predicted from the
null model corresponds to the amount of behavior
change that can be ascribed to selection. The correspond-
ing selection estimate may be calculated for any compo-
nent of the observed behavior such as relative time
allocation, peck frequency, or average success rate of
pecking, the only difference being that the feedback func-
tion used in the null model needs to be specified such that it
captures the effects of the corresponding target behavior.
The proposed method can thus be summarized by the fol-
lowing steps: first, describing the experimental scenario in
terms of behavioral selection using a specific model that is
consistent with the MLBS, second, constructing a null
model to calculate the amount of behavior change that
would have occurred in the absence of selection, and, third,
subtracting the behavior change predicted from the null
model from the actually observed behavior change.

In the following section, we will demonstrate the
method outlined above by applying it to an actual empir-
ical data set. We will show how empirical estimates of
selection for various components of operant behavior can
be obtained and how these model-based estimates can be
evaluated, compared, and tested for statistical signifi-
cance using a permutation test framework.

APPLICATION: OPERANT SELECTION
BETWEEN LEARNING TRIALS

We demonstrate how the general methodology described
above may be implemented in an empirical study using a
minimal example for illustrative purposes. We apply the
method to the data from two training trials (first and last
days) of a published behavioral experiment involving
pigeons (Anselme et al., 2022). The focus of the main experi-
ment was to investigate the effects of differential distribution
of food items per patch in the holes of a board on foraging
behavior. Here, we focus on the training trials administered
prior to the main experiment, consisting of two conditions
only (“no food” vs. “guaranteed food” at the beginning of a
trial). The question we address is to what extent several
components of the pigeons’ behavior may have been the tar-
get of operant selection and whether the estimated selection
effects are significantly distinct from zero.

Experimental apparatus and data acquisition

We exploited some video data from a published study
(Anselme et al., 2022) to obtain suitable data for the
application of the method outlined above. Here, we only
provide the methodological details that are relevant to
understanding our analyses.

Nine naïve pigeons were maintained at 85%–90% of
their free-feeding body weight to motivate them to eat in
the task. The pigeons were tested in a rectangular wooden
box with a floor that was a horizontally removable plate
of wood (120 � 70 � 2 cm [L � W � H]), perforated with
holes (1.5 cm in diameter and ± 1.5 cm in depth). The for-
aging board contained 60 holes organized as six rows of
10 holes regularly spaced. The board was covered with a
black plastic tape with a crosscut above each hole to create
an opening, which allowed the pigeons to access the food
items while being unable to visually detect their presence
from a distance (Figure 1). Specific stimuli (green and red;
21 � 14.5 cm [L � W]) were used to signal the consistent
presence or absence of food per hole in one area. The two
areas were separated by means of a colored strip glued on
the plastic tape, dividing the board in two equal left and
right areas of 30 holes each from the entrance compart-
ment. Each session was recorded with an external camera
that was placed above the apparatus.

In each of the 30 holes of one area (left or right, coun-
terbalanced across trials within the same individuals),

4 BORGSTEDE and ANSELME
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we positioned one food item (corn, green pea, yellow pea,
or sunflower), and this area was associated with one dis-
criminative stimulus (red or green, counterbalanced
across individuals) placed on each wall (4 cm above the
floor level) from the first to the last trial. For a given indi-
vidual, a stimulus location was counterbalanced across tri-
als. The 30 holes of the adjacent area remained empty and
were associated with the other stimulus placed on each wall.
Of note, the pigeons were initially trained for 3–4 days with
uncovered holes, each containing one grain, such that they
could see the food in the holes on inspection. No discrimi-
native stimulus was used at this stage. After this initial train-
ing, the pigeons were trained as reported above for four
consecutive days with covered holes.

Data extraction

Data were collected on manual counting (food items con-
sumed and number of pecks per area for each trial).Determin-
ing whether a peck at a hole was successful (food item
grasped) or not was mostly impossible from the videos such
that pecking is not synonymous with consumption. A peck
simply means a vertical downshift of the pigeon’s head above
a hole.We considered a pigeon to be positioned in a given area
if its head was in this area—because its body could be in one
area while pecking in the adjacent one. Sometimes, the pigeon
missed a grain (picked it up and lost it) such that it rolled on
the board. In the attempt to get it, the pigeon could cross the
demarcation line between the two areas. A peck given outside
of a hole, even to get amissed grain, was not counted.

Data analysis

We focused on the observed quantitative changes in individ-
ual foraging behavior between trials and its relation to indi-
vidual capture rates. The primary measures used in the
analysis were the time spent at the food and the no-food

region (Tþ and T�, respectively), the number of pecks
emitted while staying at the food region and the no-food
region (Bþ and B�, respectively), and the number of food
items retrieved during each trial (R). Because the most
plausible predictor of evolutionary fitness in the current
scenario is the retrieval of food per time (capture rate,
C), we divided the number of retrieved food items during
a trial by the total amount of time spent foraging
(i.e., the total time the pigeon spent either in the food or
the no-food region during each trial) such that C¼R=T
with T ¼TþþT�.

As possible targets of operant selection, we calculated
three derived behavioral measures. First, relative time at the
food region (time allocation, A) was calculated by dividing
the time spent at the food region by the total foraging
time—that is, A¼Tþ=T . Second, differential peck fre-
quency (peck speed or velocity, V ) was calculated by divid-
ing the number of observed pecks at the food region by
the time spent at the food region for each trial—that is,
V ¼Bþ=Tþ. Third, the average success rate of a peck emit-
ted at the food region (peck accuracy or skill, S) was calcu-
lated by dividing the number of retrieved food items by the
number of pecks at the food region—that is, S¼R=Pþ.

As pigeons are known to forage systematically,
thereby avoiding sites that they have already exploited
(Baum, 1987), the expected number of food items per
peck only depends on the average pecking success, yield-
ing a feedback function that is approximately linear until
all grains are retrieved (for higher numbers of pecks, the
slope of the feedback function is zero).3 The slopes of

F I GURE 1 Experimental setting. Pigeons were put in a 120- � 70-cm
experimental chamber with 60 covered holes. In the food region, each hole
contained a grain. In the no-food region, the holes were empty. F I GURE 2 Calculation of selection estimate for time allocation from

the feedback functions ofDays 1 and 4 (data obtained fromPigeon 118). The
difference between the predicted time allocation (filled red circle) and the
observed time allocation onDay 4 (filled black circle) equals the estimated
amount of operant selection acting on time allocation (see text for details).

3The analysis would be equally possible for random foraging behavior. In this
case, the slope of the feedback function would also depend on the number of food
items that have already been retrieved, yielding a negatively accelerated change in
expected feedback. Reanalysis of the data under the assumption of random
foraging changed the quantitative estimates of the MLBS but did not change the
overall qualitative patterns or the group-level effects.

MODEL-BASED ESTIMATES FOR OPERANT SELECTION 5
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the feedback functions correspond to the average gain in
capture rate per unit change in the corresponding behav-
ior for each trial. The average gains follow directly from
the definitions of the derived measures. The slopes of the
corresponding feedback functions are a result of the
equality C¼AVS.4 For time allocation, rearrangement
of the above identity yields a slope of βCA ¼VS; for peck
speed, the corresponding slope is βCV ¼AS; and for peck
accuracy, we obtain βCS ¼VA, respectively. As an illus-
trative example, the linear feedback function for time
allocation of one individual (P118) is depicted in
Figure 2. The dashed black line depicts the feedback
function for the first trial that was obtained from the
observed time allocation and capture rate during Day 1.
The observed data from the first trial are indicated by the
filled black circle that lies on the dashed black line. The
feedback function and data for the last trial (Day 4) are
indicated by the solid black line and another filled black
circle, respectively.

The null model for each behavioral measure was
constructed by replacing the observed capture rate on
Day 4 by the observed capture rate on Day 1, thereby
constraining the change of the quantitative fitness predic-
tor to zero. In Figure 2, this constraint is illustrated by
the horizontal dashed red line that indicates the capture
rate on Day 1. The point where the red dashed line inter-
sects with the feedback function from Day 4 (solid black
line) designates the data predicted from the null model
for Day 4 (marked with a filled red circle). The corre-
sponding value on the horizontal axis for predicted time
allocation on Day 4 is then compared with the observed
time allocation on Day 4. The difference between these
two values quantifies the amount of behavior change that
can be attributed to operant selection and is indicated by

a horizontal arrow in Figure 2. The selection estimates
for the other two behavioral measures were calculated
analogously using the respective feedback functions for
peck speed and peck accuracy.5

To test whether the theory-based selection estimates
were significantly different from zero, we performed
two-sided exact permutation tests (Edgington &
Onghena, 2007). We also tested the absolute change
values observed for each behavioral measure for signifi-
cant deviations from zero using two-sided exact

TABLE 1 Comparison of first and last training trial (Day 1 and Day 4) with respect to time allocation (time at the food region divided by total
foraging time), peck speed (number of pecks divided by time at the food region), peck accuracy (number of retrieved food items divided by number of
pecks at the food region), and capture rate (number of retrieved food items divided by total foraging time).

Time allocation Peck speed Peck accuracy Capture rate

Day 1 Day 4 Day 1 Day 4 Day 1 Day 4 Day 1 Day 4

P17 0.95 0.96 0.40 0.15 0.09 0.26 0.03 0.04

P73 0.84 0.63 0.67 0.89 0.04 0.05 0.02 0.03

P91 0.89 0.48 0.84 0.91 0.05 0.11 0.04 0.05

P96 0.74 0.80 0.81 1.11 0.05 0.15 0.03 0.14

P97 0.83 0.76 0.52 0.80 0.05 0.13 0.02 0.08

P103 0.72 0.78 0.11 0.77 0.02 0.06 0.00 0.04

P118 0.70 0.79 0.39 0.63 0.07 0.07 0.02 0.03

P519 0.73 0.74 0.22 0.49 0.20 0.14 0.03 0.05

P534 0.79 0.91 0.82 0.64 0.05 0.15 0.03 0.09

M 0.80 0.76 0.53 0.71 0.07 0.13 0.03 0.06

SD 0.09 0.14 0.27 0.28 0.05 0.07 0.01 0.04

TABLE 2 Selection estimates for time allocation (time at the food
region divided by total foraging time), peck speed (number of pecks
divided by time at the food region), and peck accuracy (number of
retrieved food items divided by number of pecks at the food region).
The corresponding group-level p values were obtained from two-sided
exact permutation tests.

Behavioral selection

Time allocation Peck speed Peck accuracy

P17 0.13 0.02 0.04

P73 0.08 0.11 0.01

P91 0.12 0.22 0.03

P96 0.60 0.85 0.12

P97 0.57 0.60 0.10

P103 0.74 0.73 0.06

P118 0.35 0.28 0.03

P519 0.26 0.17 0.05

P534 0.60 0.42 0.10

M 0.38* 0.38* 0.06*

SD 0.25 0.29 0.04

Note: p values obtained from nonparametric exact permutation tests.
*p < .05.

4This identity can easily be verified because, by definition, capture rate may be
decomposed such that R=T ¼R=Pþ �Pþ=Tþ �Tþ=T . 5A mathematical derivation of the calculations is provided in the Appendix.
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permutation tests to evaluate whether the model-based
estimates provided any information beyond the raw data.
All statistical analyses were conducted using the
software R, version 4.2.2 (R Core Team, 2022).

RESULTS

Table 1 summarizes the pigeons’ behavior during the first
and the last trial of training, respectively. The average
time allocation during the first trial was 0.8 (SD = 0.09),
indicating that pigeons already spent most of their forag-
ing time at the food region during Day 1. The average
time allocation during the last trial was 0.76 (SD = 0.14).
Thus, average time allocation decreased over training tri-
als. The average peck speed at the food region was 0.53
(SD = 0.27) on Day 1 and was 0.71 (SD = 0.28) on
Day 4, suggesting an increase in mean peck speed. Aver-
age peck accuracy also increased from 0.07 (SD = 0.05)
on Day 1 to 0.13 (SD = 0.07) on Day 4 but was unex-
pectedly low even after 4 days of training. Visual inspec-
tion of the video material revealed that it often took the
pigeons several attempts (sometimes up to 10 pecks or
more) to retrieve a food item from a hole in the board.
The difficulty of the task thus appears to be related to
motor skills rather than failure of food detection. Of the
three behavioral measures, the exact paired-samples per-
mutation test was only significant for the change in accu-
racy (p = .004).6 Average capture rate increased from

0.03 (SD = 0.01) on Day 1 to 0.06 (SD = 0.04) on
Day 4. The corresponding paired-samples permutation
test indicated that the observed increase in capture rate
was significantly different from zero (p = .004).

Table 2 shows the amounts of selection on time alloca-
tion, peck speed, and peck accuracy that were estimated
from the corresponding null models by calculating the dif-
ference between the predicted and the observed values dur-
ing the last trial (see Data analysis and Appendix for
details). All three behavioral measures yielded positive selec-
tion estimates for all nine pigeons. Average change was
largest for time allocation (M = 0.38, SD = 0.25) and
peck speed (M = 0.38, SD = 0.29) and less expressed for
peck accuracy (M = 0.06, SD = 0.04). However, given that
accuracy was very low throughout all sessions, this differ-
ence appears to express the overall difficulty of food
retrieval rather than a lower selection pressure. The exact
two-sided permutation tests revealed that the selection esti-
mates differed significantly from zero for all three behav-
ioral measures (p = .004 for each test). Note, however, that
the significance tests are not independent, as the three selec-
tion estimates are positively correlated to a considerable
degree (correlation coefficients ranging between .77 and .9).
Figure 3 presents a graphical comparison between the mean
values and standard deviations for observed change and
behavioral selection for time allocation, peck speed, and
peck accuracy, which supports the conclusion that selection
significantly differs from zero in all three behaviors.

CONCLUSION

In this article, we proposed a new method to quantify
the amount of operant selection in behavioral experi-
ments by means of model-based estimation. The method
builds on a formal theory of operant selection, the

F I GURE 3 Group means (filled circles) and standard deviations (error bars) for observed change and behavioral selection. The vertical axis
depicts the change from Day 1 to Day 4 (delta) for the raw data (Panel a) and the model-based selection estimates (Panel b).

6As there are nine individuals, there are 29 ¼ 512 possible permutations from
which the test distribution is constructed. Consequently, a p value of :004 means
that only two out of 512 permutations deviate at least as much from the null
hypothesis (“no change”) as the observed data. For a two-sided test, this means
that the observed test statistic was the most extreme deviation in the observed
direction out of all possible permutations (see Edgington & Onghena, 2007, for a
detailed exposition).

MODEL-BASED ESTIMATES FOR OPERANT SELECTION 7

 19383711, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jeab.924, W

iley O
nline L

ibrary on [03/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MLBS, which provides an explicit definition of operant
selection in terms of an extended Price equation. Apply-
ing the MLBS to empirical data, we showed how selec-
tion may be inferred for different behavioral measures
such as time allocation, peck speed, and peck accuracy.
The rationale was to use the MLBS to construct a null
model that predicts the expected change in behavior in
the absence of selection. The difference between the
observed behavior change and the predicted behavior
change yields an estimate of the selection component of
operant behavior.

The method allowed the estimation of different selection
effects (i.e., selection on time allocation, peck speed, and
peck accuracy) using data from a published foraging experi-
ment. In contrast to the observed raw behavior changes, the
selection estimates all significantly differed from zero, indi-
cating that selection was effective even in cases where it was
not obvious from the raw data alone. The data further
revealed that the selection estimates of allocation, speed,
and accuracy were not independent of one another. This lat-
ter result is hardly surprising, as the estimation procedure
for any of the three behavioral components assumes that
the other two behavioral components remain unchanged.
However, actual changes in allocation, speed, and accuracy
are likely to affect each other. For example, if a pigeon
learns where food can be found, this might speed up pecking
activity at the relevant area. Therefore, the selection esti-
mates are not to be interpreted as independent additive
effects. Instead, they tell us how much change in a certain
behavior would be attributable to operant selection if selec-
tion was acting exclusively on this behavior.

We presented the first empirical application of
the MLBS in the context of a behavioral experiment. The
experiment itself was chosen such that it is as simple as pos-
sible to serve as a minimal example for the method pro-
posed in this article. Of course, there are various limitations
with respect to the data because they were originally col-
lected for a different purpose. For example, the foraging
board was constructed in a way that one could not unequiv-
ocally identify the retrieval of food on the videos. Making
the floor below the cover transparent might have solved this
problem (Baum, 1987). However, this would have possibly
enabled the pigeons to see where the food is (because of the
light emerging from the holes in the absence of food), a situ-
ation likely to affect their foraging behavior. Despite the
limitations of the experimental application, our results show
that the MLBS in combination with the model-based esti-
mation approach provides a feasible theoretical foundation
for the experimental analysis of behavior.

The general methodology of model-based selection
analysis can be applied to many other experimental settings
that involve behavior change over time. Probably, there are
thousands of unused training data sets only awaiting to be
analyzed. We hope that this article contributes to the foun-
dations of behavioral selection as a general theory of behav-
ior and encourages other researchers to put the behavioral
selection perspective into practice.
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APPENDIX

Derivation of the covariance-based law of effect
The covariance-based law of effect (CLOE) is basically a
recursive expansion of the elementary Price equation
(Price, 1970):
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wΔb¼Covi wi,bið ÞþEi wiΔbið Þ:
In the Price equation, wi designates an individual’s

evolutionary fitness, bi designates the value of an arbi-
trary evolving character value, and w and b designate the
population averages of wi and bi, respectively. The terms
Covi and Ei are the population covariance and the
expected value of the population, Δbi is the individual-
level change in character value (usually thought of as
change between parent and offspring), and Δb is the pop-
ulation-level change in character value.

The term Covi wi,bið Þ captures the effects of natural
selection, whereas the term Ei wiΔbið Þ refers to changes in
the population average of the target characteristic b that
are not natural selection. If the time frame is chosen suffi-
ciently small, and individuals are treated as their own off-
spring, Ei wiΔbið Þ captures changes that occur within
individuals.

In the MLBS, the fitness-weighted within-individual
change, wiΔbi, is itself partitioned into a covariance term
and an expectation term:

wiΔbi ¼Covj wij ,bij
� �þEj wijΔbij

� �
:

Whereas in the original Price equation, the covariance
and expectation are taken over the individuals i of a pop-
ulation, in the MLBS, they are taken over a collection of
recurring contexts j (so-called behavioral episodes) that
are themselves nested within individuals. Consequently,
the covariance term Covj wij ,bij

� �
refers to the part of

within-individual change that can be attributed to selec-
tion at the individual level (i.e., reinforcement), whereas
the expectation term Ej wijΔbij

� �
captures all sources of

within-individual change that are not selection.
Given an arbitrary fitness predictor p (e.g., food), evo-

lutionary fitness can be predicted by a linear regression of
the form w¼ βwppþ ε. We can now rearrange to obtain

wiΔbi ¼ βwpCovj pij ,bij
� �

þEj wijΔbij
� �

:

Defining ΔSb¼ βwp
wi
Covjðpij ,bijÞ and δ¼ Ej wijΔbijð Þ

wi
, we

get the covariance-based law of effect:

Δb¼Δsbþδ:

Estimating operant selection from molar feedback
functions
For each behavioral measure b (which may be either time
allocation, peck speed, or peck accuracy), the average
change in capture rate C per unit change in b (holding
everything else constant) can be expressed by a linear
function of the form

C¼ β �b,

where β is the slope of the feedback function. For two
different Trials 1 and 2, the observed change in behavior
(Δb) is defined as

Δb¼ b2�b1:

Given the slopes of the feedback functions for the two tri-
als (β1 and β2, respectively), the observed change becomes

Δb¼C2

β2
�C1

β1
,

with C1 and C2 being the capture rates observed in Trials
1 and 2, respectively. In the null model, the slopes of the
two feedback functions remain unchanged, whereas
the capture rate is fixed to the one observed in the first
trial. Consequently, the change predicted by the null
model (δ) is given by

δ¼C1

β2
�C1

β1
:

Because the predicted change from the null model
corresponds to the amount of change that would be
expected in the absence of selection (i.e., the nonselection
term, δ, in the CLOE), it follows that the change in
behavior due to selection (Δsb) can be calculated by tak-
ing the difference between the observed and the predicted
changes:

Δsb¼Δb�δ:

Substituting with the corresponding terms from the
above model, we obtain

Δsb¼ C2

β2
�C1

β1

� �
� C1

β2
�C1

β1

� �
,

which simplifies to

Δsb¼C2

β2
�C1

β2
:

Thus, the amount of behavioral selection may be esti-
mated by taking the difference between the observed
value of b in the second trial (which is equal to C2=β2)
and the predicted value of b in the second trial (which is
equal to C1=β2) from the null model.
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