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Abstract Because of their sophisticated vocal behaviour,

their social nature, their high plasticity and their robust-

ness, starlings have become an important model species

that is widely used in studies of neuroethology of song

production and perception. Since magnetic resonance

imaging (MRI) represents an increasingly relevant tool for

comparative neuroscience, a 3D MRI-based atlas of the

starling brain becomes essential. Using multiple imaging

protocols we delineated several sensory systems as well as

the song control system. This starling brain atlas can easily

be used to determine the stereotactic location of identified

neural structures at any angle of the head. Additionally, the

atlas is useful to find the optimal angle of sectioning for

slice experiments, stereotactic injections and electro-

physiological recordings. The starling brain atlas is freely

available for the scientific community.

Keywords Songbird � European starling � High-field
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Introduction

The European starling (Sturnus vulgaris) is one of the most

widely used passerine species in fundamental biological

research (almost 2,500 starlings were used in more than

100 studies published between 2000 and 2004; Asher and

Bateson 2008). Starlings have been an important animal

model in studies of ethology (e.g. Adret-Hausberger 1982;

Henry et al. 1994, 2013; Hausberger et al. 1995, 1997),

behavioural ecology (e.g. Powell 1974; Tinbergen 1981;

Lima 1983), ecophysiology (e.g. Grue and Franson 1986;

Eng et al. 2014) and neuroethology of song production and

perception (Leppelsack and Vogt 1976; Hausberger and

Cousillas 1995; Gentner et al. 2001; Ball and Balthazart

2001; George et al. 2004; Heimovics et al. 2011; De Groof

et al. 2013; Ellis and Riters 2013).

Within the past decades, the song control system (SCS)

and, to a lesser extent, the auditory systems and social

behavioural network of starlings have been thoroughly

examined. Up to now no atlas is available for the brain of

this species, and researchers are forced to use the atlas of

other songbird species like the zebra finch (Nixdorf-Berg-

weiler and Bischof 2007) or the canary brain (Stokes et al.

1974). Although zebra finch and canary brains are similar

in size, the brain of a starling is almost three times the

volume, making it hard to extrapolate stereotactic coordi-

nates from either of the atlases to that of the starling brain.

Both atlases of the songbird brain are still widely used but

obviously have the limitations of all brain atlases that are

based on drawings of brain sections: they not only provide

a mere 2D perspective of the brain, but they are also de-

pendent on previously specified sectioning angles.

To further neurobiological studies in starlings, we,

therefore, decided to create the first 3D magnetic resonance

imaging (MRI) atlas of the starling brain as a freely
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available tool for the scientific community. The atlas is

based on several scanning protocols, each with their own

advantages and disadvantages, to visualize a wide range of

neural structures. Reflecting the traditional interest in the

song production and perception processes in starling, we

tried to visualize the song control and auditory systems, as

completely as possible. In addition we describe the dif-

ferent brain subdivisions as well as the main fibre tracts.

We tried to establish a combined atlas that allows not only

for the identification of a larger number of brain structures,

but also allows researchers to select those datasets that fit

best with their scientific interests. The starling brain atlas

presented here can be easily adapted to match any surgical

setup or histological protocol and should be appealing for

future birdbrain studies. We hope that this starling brain

atlas will advance studies in this songbird model in an era

where traditional and MRI-based studies will intermingle

more and more.

Materials and methods

Specimen preparation

For this study, one wild adult male European starling

(S. vulgaris) caught in Normandy (France) in 2006 and

kept in outdoor aviaries in Rennes (France) until the ex-

periment, was deeply anaesthetized with pentobarbital and

transcardially perfused with a phosphate-buffered hep-

arinized saline solution (PBS, 0.12 M), followed by a

mixture of paraformaldehyde (PFA, 4 %) and Dotarem�

(1 %), a paramagnetic MR contrast agent. After decapita-

tion, the head was post-fixed in a mixture of PFA (4 %) and

Dotarem (1 %) for at least 5 days at 5 �C. The starling

(body weight of 99.4 g) was perfused during the breeding

season (25th March 2009) and the colour of its beak was

yellow indicating high plasma testosterone levels (Bul-

lough 1942; Dawson and Howe 1983; Ball and Wingfield

1987) at the time of perfusion.

Data acquisition

To obtain a 3D representation of the skull, the whole bird’s

head was imaged with a Siemens PET-CT equipped with a

rotating 80 kV X-ray source (focal spot size of 50 lm) and

a Siemens Inveon PET-CT Camera with a 125 mm X-ray

detector. Isotropic voxels were acquired with a resolution

of 223 9 223 9 223 lm.

3D MRI datasets of the starling brain were acquired with

a 9.4 T Biospec� horizontal bore NMR scanner (Bruker

BioSpin, Ettlingen, Germany), equipped with a 120-mm

BGA12-S actively shielded gradient-insert with a max-

imum gradient strength of 600 mT/m attached to an

AVANCE-II Bruker console and a 7T Pharmascan�

horizontal bore NMR scanner (Bruker BioSpin, Ettlingen,

Germany) equipped with a 90-mm BGA9-S actively

shielded gradient-insert with a maximum gradient strength

of 400 mT/m attached to an AVANCE-III Bruker console.

A Bruker cross-coil setup with a linear transmit volume

coil and a parallel receive surface array designed for rat

head MRI was used on the 9.4T. The standard Bruker

cross-coil setup with a quadrature volume coil and a

quadrature surface coil for rats was used on the 7T.

Proton-density weighted 3D images were acquired on

the 7T using a RARE sequence with a RARE factor of 2, a

spectral bandwidth (BW) of 50 kHz, an Nav of 2, a TR of

500 ms and an effective TE of 25 ms. Images had a FOV

of (21.76 9 21.76 9 21.76) mm3 with an acquisition ma-

trix size of (256 9 256 9 256) resulting in an isotropic

spatial resolution of 85 lm in all three directions. Acqui-

sition time was 9 h 6 min.

T2-weighted 3D images were acquired on the 9.4T using

a spin echo sequence, a spectral bandwidth (BW) of

34.7 kHz, 2 averages (Nav), a repetition time (TR) of

5,000 ms and an echo-time (TE) of 60 ms. Images had a

field of view (FOV) of (21.76 9 21.76 9 21.76) mm3 with

an acquisition matrix size of (256 9 192 9 128) zero-fil-

led to (256 9 256 9 256) resulting in an isotropic spatial

resolution of 85 lm in all three directions. Acquisition time

was 51 h 12 min.

T2*-weighted 3D images were acquired on the 7T using

a FISP gradient echo sequence with a 15� flip-angle, a BW
of 50 kHz, an Nav of 45, a TR of 14.31 ms, a TE of 6.5 ms

and a scan repetition time of 7,500 ms. Images had a FOV

of (20.48 9 20.48 9 20.48) mm3 with an acquisition ma-

trix of (512 9 512 9 256) zero-filled to (512 9 512 9

512) resulting in an isotropic spatial resolution of 40 lm in

all three directions. Acquisition time was 24 h.

Brain area delineation and 3D reconstruction

All MRI datasets and the CT dataset were co-registered

with the SPM 8 package using normalized mutual infor-

mation. The MRI images were used as such to co-register

to each other; however, to co-register the MRI images to

the CT image the brain surface was delineated from the

MRI image and used as input for coregistration. The po-

sition of the ear canal and thus the most likely position of

stereotactic ear-bars was established with the CT-data, and

all datasets were reoriented to match a 45� angle of the ear
bars and the most posterior part of the beak-opening to the

horizontal axis.

All atlas delineations were performed with Amira 5.5

(Mercury Computer Systems, San Diego, CA, USA). The

delineation of the skull was based on the CT dataset and

was conducted automatically using a signal intensity high-
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pass threshold. The brain surface and the neural subdivi-

sions of both hemispheres were manually delineated, based

on the MRI signal intensity differences between brain re-

gions (Table 1). The delineation of each brain structure and

fibre tract was performed mostly in frontal plane and

subsequently controlled in the two other planes.

Results

Scanning protocols and structural delineations

Different imaging protocols provide different and com-

plementary possibilities to delineate neural structures. X-

ray CT imaging is essential to anchor the precise position

of the brain within the skull. It thus represents a crucial first

step to enable the construction of a stereotactic atlas since

the brain position within the skull can be co-registered with

the MR-based structural positions. We first defined a ref-

erence plane from three CT imaging based reference

points: both ear canals, and the most posterior end of the

beak opening. The horizontal plane of the brain atlas was

then defined as a plane tilted by 45� to the reference plane

about the axis running through both ear canals (Fig. 1). CT

imaging is not useful to visualize brain areas. This is best

done with the protocols outlined below (Table 1).

T2-weighted imaging produces images where water-

containing areas become bright and fatty/cell-dense struc-

tures become dark. This sequence produced a very good

anatomical image of the birdbrain with most of the brain

nuclei clearly visible and delineable (Fig. 2a, b). Also the

larger fibre tracts and several of the forebrain lamina could

be distinguished. Although the strong signal deriving from

the fluid-filled lateral ventricle made it easily detectable,

this also caused a slight over-saturation, decreasing delin-

eation accuracy of this structure. The images provided very

nice contrast especially in the sagittal images. Due to zero-

filling, we got more smoothed images for axial and to a

lesser extent coronal images.

Proton-density weighted imaging provides images with

an intermediate contrast between T1 and T2 weighted

images, increasing delineation accuracy. Here we had less

oversaturation of the liquid-filled lateral ventricle seen in

the T2 weighted images (Fig. 2c). Since the images were

obtained without zero-filling, we had very nice contrast and

sharpness in all three orthogonal directions.

T2*-weighted imaging gives rise to the same type of

contrast as normal T2-weighted imaging, but with much

lower signal and contrast properties. However, because a

gradient-echo sequence is many times faster than a spin-

echo sequence, a very high resolution can be achieved

within a normal time frame. Thus, at the cost of contrast,

those regions that were visible could be delineated much

more accurately. Also, the high resolution of these images

allowed for the detailed visualization of most of the fibre

tracts (Fig. 2d). The images provide very nice contrast

especially in the coronal plane. Due to zero-filling we got

slightly more smoothed images for axial and sagittal

images.

Although T1 imaging is commonly used for anatomical

inspection of human brains in clinical practices, in songbird

measurements this technique offers only poor regional

contrast within the brain, making it rather difficult to dis-

tinguish individual brain areas from the brain’s background

(Vellema et al. 2011). It was, therefore, not used here.

Data presentation and validation

The co-registered MRI and CT datasets, including skull,

and 46 brain subdivisions are freely available for download

from our website: https://www.uantwerpen.be/en/rg/bio-

imaging-lab/research/mri-atlases/starling-brain-atlas/. Data

are available in Analyze format, which is supported by

most 3D visualization software packages, including the

free software MRIcro (http://www.cabiatl.com/mricro/mri

cro/mricro.html). Documentation describing how to visu-

alize and customize the 3D datasets in MRIcro can also be

found on our website.

The default data orientation is presented in a similar

fashion as previously published atlases (Stokes et al. 1974;

Nixdorf-Bergweiler and Bischof 2007), with a head-angle

of 45�. The 45� angle has been calculated based on the axis

through the ear canal (the most likely position for fixating

ear bars) and the most posterior end of the beak opening

relative to the horizontal plane. When loaded into MRIcro,

the junction formed by the dorsocaudal cerebral vein and

two branches of the transverse venous sinus (two major

blood vessels running along the brain’s midline), a

V-shaped stereotactic landmark often used for surgical

procedures, is reset to the zero-coordinate by default. This

reference-point can be manually altered, however, if an-

other zero-coordinate is preferred. In this reference frame,

the X-axis represents the brain’s left-to-right axis, the Y-

axis corresponds to the posterior–anterior axis, and the Z-

axis corresponds to the dorsal–ventral axis of the brain. The

stereotactic coordinates of a specific brain area can be

easily acquired by moving the cursor onto the desired

region.

The 3D datasets can also be used to determine the op-

timal head angle for stereotactic operations or the best

cutting angle for sectioning. If it is important to have

multiple brain areas of interest in one single brain section,

rotation and oblique slicing tools can easily be used to

estimate the best cutting angle (Fig. 3).

Different datasets and delineations can be superimposed

and manipulated synchronously to attain the desired brain
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Table 1 Delineated structures

and their systems
System Abbreviation Structure

Song control system HVC HVC

RA Robust nucleus of arcopallium

X Area X

MMAN Medial magnocellular nucleus of anterior nidopallium

LMAN Lateral magnocellular nucleus of anterior nidopallium

DLM Dorsolateral nucleus of medial thalamus

Auditory system Field L Field L

NCM Caudal medial nidopallium

CMM Caudomedial mesopallium

Ov Nucleus ovoidalis

MLd Dorsolateral nucleus of mesencephalon

Visual system E Entopallium

Rt Nucleus rotundus

TeO Optic tectum

Olfactory system OB Olfactory bulb

Social behaviour network POM Medial preoptic nucleus

TnA Nucleus taeniae amygdala

GCt Midbrain central grey

LS Lateral septum

MS Medial septum

PVN Paraventricular nucleus

VMH Ventromedial nucleus of the hypothalamus

VTA Ventral tegmental area

Fibre tracts TSM Septopallio-mesencephalic tract

CoA Anterior commissure

CoP Posterior commissure

N3 Oculomotor nerve

OM Occipito-mesencephalic tract

MFB Medial forebrain bundle

LFB Lateral forebrain bundle

QF Quintofrontal tract

FA Fronto-arcopallial tract

Opt Optic tract

DSD Dorsal supraoptic decussation

HiC Hippocampal commissure

Subdivisions N Nidopallium

M Mesopallium

A Arcopallium

H Hyperpallium

Hp Hippocampus

St Striatum

Mb Midbrain

Di Diencephalon

Cb Cerebellum

Pont Pont

LV Lateral ventricle
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Fig. 1 Overlap of MRI starling

brain with delineated structures

within the CT head data and the

starling’s brain position. The

bony structure becomes more

transparent from left to right and

from top to bottom, giving a

better view onto the brain. The

lower right shows the brain

(with subdivisions) without the

skull

Fig. 2 Different imaging protocols offer different contrast properties.

Each row shows three sagittal views of the starling brain at,

respectively, 2.55, 1.19 and 0.60 mm from midline and one axial view

at 3.50 mm anterior from the sagittal sinus bifurcation. a Schematic

drawings illustrating important brain structures. b T2 images show

good overall anatomy, with contrasting brain nuclei. Note also the

strong oversaturated signal from the lateral ventricle. c Proton density

weighted images show good overall anatomy, with contrasting brain

nuclei and less oversaturated ventricles. d T2
* images show a high-

quality overall anatomy with distinguishable fibre tracts, at the cost of

contrast in brain nuclei. CA anterior commissure, Cb cerebellum, CP

posterior commissure, HP hippocampus, HVC used as proper name,

LV lateral ventricle, MLd dorsolateral nucleus of mesencephalon,

MMAN medial magnocellular nucleus of anterior nidopallium, NCM

caudal medial nidopallium, OB olfactory bulb, RA robust nucleus of

the arcopallium, TSM septopallio-mesencephalic tract
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image. The delineation sets can further be used to generate

a 3D representation of the brain that gives an accurate

description of the relative location, shape and volume of

brain areas (Figs. 4, 5).

Discussion

Because of their sophisticated vocal behaviour, their social

nature, their high plasticity and their robustness, starlings

have become an important model species that is widely

used in the field of neuroscience (e.g. Bigalke-Kunz et al.

1987; Bee and Klump 2004; Austad 2011; Feinkohl and

Klump 2011), especially in studies of neuroethology of

song production and perception (e.g. Bernard et al. 1996;

Bolhuis and Eda-Fujiwara 2003; Alger et al. 2009; George

and Cousillas 2012; Ellis and Riters 2013). Being a sea-

sonal species, they are also well suited for studies of neu-

roendocrinology and seasonal brain plasticity (e.g. Bernard

and Ball 1997; Ball et al. 1999; Bentley et al. 1999; Absil

et al. 2003; Alger and Riters 2006; De Groof et al. 2008,

2009, 2013; Cousillas et al. 2013).

One limitation of using starling for neuroscience re-

search is that no detailed brain maps are available. Neu-

robiological scientists are forced to use 2D atlases of either

the canary brain (Stokes et al. 1974) or the zebra finch

brain (Nixdorf-Bergweiler and Bischof 2007) as the closest

songbird brain species. However, both canary and zebra

finch brains are considerably smaller than that of the star-

ling, making it sometimes hard to find the complementary

structure in the starling brain (Fig. 6). Also there might be

a slight difference in relative positioning of the different

nuclei between species. Traditional atlases are often based

on drawings of histological brain sections and are depen-

dent on the interests of the researcher constructing the atlas

both in sectioning orientation and in delineation of brain

structures. 3D imaging techniques such as MRI, however,

give us the opportunity to examine the brain from a 3D,

whole-brain point of view (Ma et al. 2005; Van Essen

2005; Saleem and Logothetis 2007; Poirier et al. 2008;

Datta et al. 2012; Muñoz-Moreno et al. 2013; Güntürkün

et al. 2013; Nie et al. 2013; Kumazawa-Manita et al. 2013;

Ullmann et al. 2014). Here we present the first 3D MRI-

based atlas of the starling brain, a model system often used

for neurobiological and behavioural studies. We tried to

capture as many different brain regions as possible, making

this atlas suitable for many different fields of birdbrain

research. There are several advantages in the brain atlas

that we present here over the previously published 2D atlas

of the canary brain (Stokes et al. 1974) and similar brain

atlases of other bird species (e.g. Karten and Hodos 1967;

Nixdorf-Bergweiler and Bischof 2007; Puelles et al. 2007).

First and foremost, the 3D capturing methods used in this

study allowed us to study the anatomy of a single brain

from any possible angle, eliminating the limitations of 2D

atlases that are inherently restricted to a specified

orientation.

This approach is particularly useful in combination with

other whole-brain imaging techniques such as functional

MRI (Van Meir et al. 2005; Voss et al. 2007; Poirier et al.

Fig. 3 Oblique slicing. 3D renderings of the brain surface showing

the best cutting angle to include HVC and its efferent Area X (top),

and DLM (dorsolateral nucleus of medial thalamus) and its efferent

LMAN (bottom lateral magnocellular nucleus of anterior

nidopallium) of both hemispheres in one sectioning plane. T2-

weighted image data are shown as raw data with overlay showing

subdivisions and nuclei (right)
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Fig. 4 a 3D rendering of the brain with subdivisions. b Transparent overlay showing the brain (T2 weighted image) with delineated subdivisions

on sagittal slices. c Transparent overlay showing the brain (T2 weighted image) with delineated subdivisions on axial slices

Fig. 5 3D rendering of the

brain. a Non-transparent

rendering showing the outer

brain surface with delineated

subdivisions. b Transparent

rendering showing the brain

nuclei
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2009; De Groof et al. 2013; Van Ruijssevelt et al. 2013)

and Diffusion Tensor Imaging (De Groof et al. 2009). The

atlas could be applied as a template for (future) studies of

these types in starlings (De Groof et al. 2013).

The possibility to reset the coordinate system of the

brain-model to any preferred orientation makes it cus-

tomizable to any stereotactic device that may be used for

brain injections or electrophysiological recordings. Besides

locating target areas based on stereotactic coordinates, the

3D brain atlas is well suited to optimize surgical protocols

to avoid damage in specified regions. When injecting a

tract-tracer in RA for example (e.g. Kirn et al. 1999;

Roberts et al. 2008), the brain atlas could be used to cal-

culate the optimal head angle to avoid any leakage from the

injection tract into its afferent nucleus HVC, which is lo-

cated directly above RA at certain angles. Alternatively,

one might want to angle the head to the side to avoid

puncturing the lateral ventricle, which could lead to an

unwanted spread of a chemical through the brain.

The reorientation possibilities of the atlas are also well

suited to calculate the best angle for making brain sections

that contain multiple regions of interest (Fig. 3). This could

be very useful for histological staining procedures or in situ

hybridization protocols (e.g. Jarvis and Nottebohm 1997;

Tramontin et al. 1998; Metzdorf et al. 1999) in which two

or more brain areas are requested in a single brain section,

potentially making comparative quantification studies more

reliable and less time consuming.

For electrophysiological recordings in brain slices

(Mooney and Prather 2005; Gale and Perkel 2006; Meitzen

et al. 2009) it can be useful to calculate the ideal sectioning

angles, not only to include two targets of interest, but also

to include intact fibre tracts running between the two re-

gions within one recording slice. The same is true for high-

density multi-electrode recordings (Amin et al. 2013;

Cousillas et al. 2013), where the final measurement sites

are highly dependent on the insertion angle of the electrode

array.

Finally, because the brain atlas has been constructed

with the skull intact, without the need for dehydration or

freeze-protection steps, the shape of the brain will be

relatively close to the in vivo situation. In contrast, 2D

atlases that are based on histological sections have to deal

with inaccuracies that are introduced during the histo-

logical procedures (Ma et al. 2005; Vellema et al. 2011).

Dehydration steps that are often necessary for histological

preparations cause a severe shrinkage of the brain, and

additional shape-artefacts are virtually unavoidable during

the cutting and mounting process.

As with 2D histological atlases, this 3D MRI brain atlas

is based on one individual’s data, in this case a male

starling during the breeding season. This is important be-

cause of both sexual dimorphisms and seasonal differences

in brain nuclei size. One should, therefore, be cautious

when attempting to obtain coordinates for certain nuclei of

female starling studies (although starlings show less sexual

dimorphism than, e.g. the zebra finch; Bernard et al. 1993;

Ball et al. 1994) or non-breeding season male starlings.

Regions known to be variable in size according to season

are most of the song control nuclei (e.g. HVC, RA and

Area X) (Ball and Bentley 2000; Tramontin and Brenowitz

2000), nuclei of the social behaviour network (e.g. POM

Riters et al. 2000) and NCM (De Groof et al. 2009).

The 3D starling brain atlas presented here could be used

as a framework for researchers working on the starling

brain, and for avian brain research in general. Together

with our previously published 3D brain atlases of the zebra

finch (Poirier et al. 2008), of the canary (Vellema et al.

2011) and of a non-songbird species (e.g. the pigeon brain

(Güntürkün et al. 2013)), we now have four detailed, easily

adaptable brain atlases for four commonly studied species

of birds that should appeal to scientists from different

Fig. 6 Para-sagittal MRI slice through HVC, RA (robust nucleus of

arcopallium) and LMAN (lateral magnocellular nucleus of anterior

nidopallium) in three different songbird species. MRI images are all

T2 weighted. Canary data are from (Vellema et al. 2011) and zebra

finch data are from (Poirier et al. 2008). The approximate volume of

the brain per species is indicated below each slice
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disciplines working on the function, physiology and

anatomy of the avian brain.
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