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Abstract

The overwhelming majority of research in the neurosciences employs P-values stemming from tests of statistical significance to
decide on the presence or absence of an effect of some treatment variable. Although a continuous variable, the P-value is commonly
used to reach a dichotomous decision about the presence of an effect around an arbitrary criterion of 0.05. This analysis strategy is
widely used, but has been heavily criticized in the past decades. To counter frequent misinterpretations of P-values, it has been
advocated to complement or replace P-values with measures of effect size (MES). Many psychological, biological and medical
journals now recommend reporting appropriate MES. One hindrance to the more frequent use of MES may be their scarcity in
standard statistical software packages. Also, the arguably most widespread data analysis software in neuroscience, matlab, does not
provide MES beyond correlation and receiver-operating characteristic analysis. Here we review the most common criticisms of
significance testing and provide several examples from neuroscience where use of MES conveys insights not amenable through the
use of P-values alone. We introduce an open-access matlab toolbox providing a wide range of MES to complement the frequently
used types of hypothesis tests, such as t-tests and analysis of variance. The accompanying documentation provides calculation
formulae, intuitive explanations and example calculations for each measure. The toolbox described is usable without sophisticated
statistical knowledge and should be useful to neuroscientists wishing to enhance their repertoire of statistical reporting.

Introduction

Since its inception in the 1920s by Ronald Fisher, the use of null-
hypothesis significance testing (NHST) has pervaded much of the
biological and psychological literature (Gigerenzer et al., 1997). In the
psychological literature, it is estimated that more than 90% of articles
employ an NHST procedure (Loftus, 1991). We know of no estimate
of the prevalence of NHST in neuroscience journals, but we suspect it
lies in the same range. Statistically significant results are considered
the prime criterion for demonstrating a treatment effect of any kind,
and it is difficult, if not impossible, to publish data that fail to pass an
arbitrary threshold of statistical significance (usually, P < 0.05 or
P < 0.01).

Although the frequent usage of NHST is adopted by most scientists
on a daily basis, there have been many articles highlighting the
shortcomings of NHST in a variety of research areas, among them
medicine (Fleiss, 1986; Goodman, 1999a,b), biology (Nakagawa,
2004), ergonomics (Vicente & Torenvliet, 2000), consumer research
(Iacobucci, 2005) and education (Kirk, 1996, 2001; Morgan, 2003).

The misuse of NHST has perhaps been most hotly debated in
psychology (Loftus, 1996; Cumming & Finch, 2005). In a special issue
of Psychological Science, statistician John Hunter (1997) called for a
ban on significance testing (also see Shrout, 1997). Following a highly
influential article in American Psychologist (Cohen, 1994), the
American Psychological Association set up a task force on statistical
inference that issued its recommendations for good statistical practice
(Wilkinson, 1999) and explicitly advocated standard usage of measures
of effect size (MES, for a definition of the term ‘effect size’ see the
paragraph further below), along with their appropriate confidence
intervals (CIs). So far, their recommendations seem not to have had the
desired impact as P-values continue to dominate statistical analysis in
psychology (Fidler, 2004; Cumming et al., 2007).
Among the reasonswhyNHST continues to bewidely used (reviewed

in Schmidt, 1996) may be that many programs used for statistical
analysis, such as Excel and spss, do not provide functions to calculate
MES, although a large part of them are not particularly complicated to
compute. Software that does provide such functionality, e.g. scripts or
packages designed for the freely available statistics program ‘r’ (Kelley,
2007; Nakagawa & Cuthill, 2007) or standalone programs (see pointers
in Kline, 2004; Jordan et al., 2010), seems not to be widely known or
used in the neurosciences. Possibly the largest barrier to the more
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widespread use of effect size statistics, in terms of software availability,
is the fact that the primary language for data analysis in the
neurosciences, matlab (The Mathworks, Natick, MA, USA), does
not provide MES even in its Statistics Toolbox, with the notable
exception of correlation (corrcoef.m, corr.m) and the receiver-operating
characteristic (ROC) curve (perfcurve.m). In addition, descriptions of
MES are largely scattered across the literature from diverse fields.
The aim of this article is therefore twofold: first, we want to briefly

review the main criticisms of NHST and introduce measures of effect
size to a neuroscience audience. The advantages of MES over the use
of P-values are illustrated with real examples from our own research.
Secondly, we describe the implementation and use of a newly
developed matlab toolbox which provides a comprehensive set of
functions for the easy calculation of parametric and non-parametric
MES, together with optional bootstrapped or analytical CIs.

Shortcomings of NHST

In this section, we briefly review some of the shortcomings of NHST.
For more extensive treatments, see Cohen (1994) and Loftus (1996).
In many research contexts, experimenters are confronted with the

question of whether differences in some variable observed in two or
more groups are ‘real’ (i.e. the samples were drawn from different
populations) or just due to sampling error (i.e. the samples were drawn
from the same distribution, and the difference in their means and
standard deviations is solely due to sampling variability). The classic
way to deal with this situation is to propose a null hypothesis stating
that the samples were drawn from a single distribution, which is the
same as saying that the difference of the means of the two populations
from which samples were drawn equals zero. Assuming this ‘null
hypothesis’ (H0), we can calculate the probability of obtaining a
difference (X) between the means of two samples from this population
which is as large as or larger than that obtained (D), P(X ‡ D|H0). This
probability is commonly referred to as the ‘P-value’. If this probability
is smaller than some predetermined value (usually, 0.05 or 0.01), the
null hypothesis is considered to be unlikely and is thus rejected. In
common language, the difference is termed ‘statistically significant’.
This logic of NHST is common to virtually all tests of significance
conducted in the life sciences, regardless of whether a t-test, analysis of
variance (anova), chi-square or some non-parametric test such as
Wilcoxon’s signed-rank test or Mann–Whitney U-test are employed.
An impressive amount of empirical research has shown that many

researchers employing NHST misinterpret the meaning of P-values.
For example, Oakes (1986) found that 42 out of 70 academic
psychologists questioned at a mathematical psychology meeting
(incorrectly) believed that a P-value of 0.01 means that, if the
experiment were repeated many times, 99% of repetitions would yield
a significant result. Cohen (1994) termed this the ‘replication fantasy’.
Tversky & Kahneman (1971) have extensively documented other

misconceptions about NHST and demonstrated how they can adversely
affect research. One of the most pervasive misconceptions about NHST
is that the P-value mirrors predominantly the magnitude of an effect.
However, a P-value is the result of several important variables, among
them sample size, sample type (independent vs. dependent), type of test
used and effect size. Moreover, the exact relation of these (and other)
variables is rather complicated, as calculations of statistical power for
an experimental design reveal (Faul et al., 2007). The misconception
that the smaller the P-value the larger the effect can be harmful to the
interpretation of research. In a similar vein, a sole focus on P-values
cannot contribute to the identification of quantitative relationships
between variables, as statistically significant differences convey

information only about the direction, not the magnitude, of an effect.
Building quantitative models of how experimental variables relate to
each other demands other analysis methods, among them MES. As
Tukey (1962) humorously put it – ‘The physical scientists have learned
much by storing up amounts, not just directions. If, for example,
elasticity had been confined to ‘‘when you pull on it, it gets longer!’’,
Hooke’s law, the elastic limit, plasticity, and many other important
topics could not have appeared…’ We have summarized the four most
frequent misconceptions about NHST in Table 1.
Beyond the documented existence of these misconceptions, the

application of NHST suffers from frequent analysis mistakes (Garcı́a-
Berthou & Alcaraz, 2004; Lazic, 2010; Nieuwenhuis et al., 2011), and
it has been suggested that replacing NHST with an analysis couched in
the framework of MES and CIs is more intuitive and hence less
vulnerable to both misunderstandings and erroneous applications
(Coulson et al., 2010).

Definition of effect size

In this paper, we propose the use of effect size in statistical reporting.
What exactly is effect size? Consider again the question of whether
differences in a variable observed in two or more groups are ‘real’ in
the sense that the underlying populations are not identical. Effect size
is the magnitude of the difference between the populations. MES are
statistics which quantify this difference. They come in two flavors:
unstandardized and standardized. For example, mean differences
belong to the category of unstandardized MES. Their magnitude is tied
to the unit of measurement (a neuron’s firing frequency in Hz, number
of correct responses, etc.); thus, they inform us on the magnitude of
effects in a way which may be preferable if we can make intuitive
sense of the units of measurement. Standardized MES, in contrast, are
‘metric-free’ – for example, the ‘d’ family of MES consists of mean
differences expressed in units of standard deviation of the samples.
Other standardized MES metrics include correlation, proportions and
ratios. It is these measures on which we focus in this article because
they permit the proverbial comparison between apples and oranges by
stripping samples of their units of measurements, or of differences in
magnitude related to, for example, methodology. For example, field
potential amplitudes in brain slice preparations are usually much
higher in interface-style recording chambers than in submersion-style
chambers; thus, if one were to compare the outcomes of identical
experiments performed with both kinds of chambers, standardized
MES would be the proper choice.
As a prime example of a measure of effect size let us consider

Hedges’ g (Hedges, 1981), applicable to the commonplace situation of
two groups of data which are approximately normally distributed.
Hedges’ g (abbreviated g) is the difference between the means of the
two groups, divided by the pooled standard deviation (Fig. 1):

Hedges0 g ¼ m2 � m1

sp
ð1Þ

where m2 is the mean of the variable in the second (e.g. treatment)
group, m1 is the mean of the variable in the first (control) group, and sp
is the pooled standard deviation of the two groups. Thus, g expresses
the difference between two means in a universal currency, the number
of standard deviations that separate the two means (a numerical
example is provided in the next paragraph). Measures of effect size
exist for a range of commonly encountered analysis situations,
including n-way analyses (up to two-way analyses in the toolbox),
parametric measures for non-normal data, and data tables (Table 2, see
also Fig. 5).
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Use and advantages of MES

In this section, we will illustrate the use and usefulness of MES for the
analysis of neurophysiological data using three examples from our
own work.

Example 1 – dependence of P-values but not MES on sample
size

As stated in the Introduction, P-values per se do not convey useful
information on the magnitude of an experimental effect or a group

difference. One of the underlying reasons is that P depends on other
factors besides effect size, such as the number of samples. MES, by
contrast, do not depend on sample size – the expected value is not a
function of sample size, although the precision of the estimate is.
Consider a data set obtained from mouse hippocampus. Theta
oscillations were measured extracellularly in vivo under two condi-
tions, before and after systemic injection of the muscarinic receptor
antagonist atropine (Hentschke et al., 2007). Data segments were
collected from periods during which the animal did not move,
corresponding to approximately 10 min recording time in each
condition. As power spectra of hippocampal field potentials from
non-moving animals often lack a clear theta peak, one may decide to
determine the prominence of theta oscillations in the time domain,
simply by measuring the amplitudes of negative-going peaks of the
signal (shown for one electrode in Fig. 2A). Plugging the values
obtained from one animal in a t-test for unpaired samples results in
P = 10)5, a highly significant result. However, a look at the means is
sobering (Fig. 2B) – there is barely a difference between the groups,
0.018 mV in absolute terms, which is dwarfed by the standard
deviation of the variable, 0.21 and 0.23 mV in the control and atropine
condition, respectively. The solution to this seeming paradox is simple
– both groups contain an extraordinarily large number of samples
(control, n = 6777; atropine, n = 5272). This example may at first
appear far-fetched – to begin with, one would usually compare the
averaged peak amplitudes across animals, not thousands of individual
amplitude values within animals. Furthermore, one informed look at a
graph depicting the means (and, ideally, standard deviations) would
dispel the illusion of a neurobiologically interesting effect of the drug
treatment. Nonetheless, the example highlights a number of important
points we wish to make. First, as stated before, any arbitrarily small
difference between groups will eventually result in a ‘significant’
P-value if only sample sizes are sufficiently high, and large effects
may go unnoticed in the inverse case. Although most scientists are
aware of this relation when explicitly asked, there are situations in
which the information necessary to judge on the relevance of P-values
will not or cannot readily be gathered. MES such as Hedges’ g (0.081
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Fig. 1. Illustration of Hedges’ g. Shown are two normal distributions, with
means m1 of )1 and m2 of +1, and a standard deviation (SD) of 1 (identical for
both distributions). Accordingly, in this example, g = (1 ) ()1)) ⁄ 1 = 2.

Table 1. The most common misinterpretations of null-hypothesis significance testing

Misinterpretation Explication Comments

Classification fallacy Belief that the P-value separates ‘signal’ (P < 0.05)
from ‘noise’ (P > 0.05); therefore, if P > 0.05, there is
no ‘real’ effect, regardless of sample size or effect size

The inductive process of NHST is asymmetric, i.e. evidence can only be
gathered against the null hypothesis, but not in support of it; therefore,
even P-values of 0.5 or higher are not indicative of the absence of an
effect; put differently, absence of evidence is not evidence of absence (see
also Rosenthal & Gaito, 1963, for the related ‘cliff effect’)

Replication fantasy 1 ) P is the probability to replicate the results of a
study; e.g. if P = 0.01, the probability to replicate
(obtain a significant effect under the same experimental
conditions) is 0.99

The probability of replication cannot be determined on the basis of the
P-value because it crucially depends on effect size and sample size as
well; the probability of replication is closely connected to statistical power
(Greenwald et al., 1996)

Magnitude fallacy The smaller the P-value, the larger the effect The size of the P-value is jointly determined by the type of test (parametric
vs. non-parametric), the type of the data (dependent vs. independent
samples) and the magnitude of the effect; even if all factors but effect size
are held constant, the relationship between effect size and P-value is
highly non-linear

Illusion of attaining
improbability ⁄
wishful thinking error

The P-value denotes the probability that the null
hypothesis is correct, P(H0); alternatively, the P-value
denotes the probability that the null hypothesis is
correct, given the data at hand, P(H0|D)

As the P-value, P(X>D|H0), can only be calculated under the assumption
that H0 is correct, it does not tell us anything about P(H0); the probability
of interest to the researcher is, in fact, P(H0|D), which can be obtained,
with several restrictions, via Bayes’ theorem (Cohen, 1994; Goodman,
1999a,b; Krueger, 2001); however, the probability P(H0|D) is very much
unlike the P-value, P(X>D|H0); for illustration: the probability to be dead
after hanging, P(D|H), is very much unlike the probability to have been
hanged, given one is dead, P(H|D) (Carver, 1978)
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in the example) inform us in a straightforward way that, at less than a
tenth of the combined samples’ standard deviation, the effect is
irrelevant. Second, the 95% CIs of (0.045 0.117) allow us to reject not
only the null hypothesis of zero effect, but also all other values outside
the interval (Steiger & Fouladi, 1997). Rejection of the null hypothesis
in the disguise of CIs eschewing zero is probably a welcome link to
familiar terrain for researchers who are unfamiliar with effect size
statistics. The true merit of CIs, however, is that they facilitate a
comparison of effects across studies, by defining a range of expected
values of effects independent of any null hypothesis (Thompson,
2002; Nakagawa & Hauber, 2011). Third, expected values of MES
such as g do not decrease with sample size (although the margin of
error, expressed as CIs, does). Fourth, Hedges’ g and t values relate to
each other; in fact, one can be computed from the other via (here
shown for independent samples):

g ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

r
ð2Þ

where t is the t-statistic from an independent samples t-test, and n1
and n2 are the sample sizes of the two groups.
To enlarge on these points, we randomly sampled subsets of the

data, starting with an n of 10 and increasing sample size in coarsely
exponential fashion up to 5000. For each pair of samples, P-values
from t-tests for unpaired samples were computed, as well as Hedges’ g

with the appropriate 95% confidence limits (Fig. 2C). The upper panel
of Fig. 2C depicts the results of the t-tests. It can clearly be seen that
P-values decrease with sample size. Statistical ‘significance’
(P < 0.05) is quite reliably obtained for sample sizes n > 2000, while
most samples n < 2000 yield non-significant results, i.e. false
negatives or type-II errors, due to the small effect size. By contrast,
g does not depend in a systematic fashion on sample size – the values
converge, with shrinking CIs, towards 0.08, the value for the full data
set. The relation between P computed from t-values and g (Eqn 2)
registers – all instances of P < 0.05 are paralleled by 95% confidence
boundaries of g which exclude zero (Fig. 2C, lower panel, bold gray
line and shading).
The finding of such a small effect size carries important implica-

tions for researchers aiming to replicate or extend results in a similar
situation. An a priori power analysis (conducted with G*Power 3.1,
Faul et al., 2007) reveals that, to replicate the finding with a power of
0.8 (i.e. to obtain a significant difference between atropine and control
conditions with a probability of 80% using a t-test) requires a
minimum total sample size of 4788 data points. If one wishes to be on
the safe side and have a power of 0.95, the sample size should be
increased to 7926 data points. A researcher who is ignorant of these
facts may therefore repeat the experiment but record for only, say,
2 min and obtain roughly 1000 data points. The probability of
replicating this effect would be merely 25% for a two-tailed t-test and
36% for a one-tailed t-test (if in the right direction). Thus, the

Table 2. Overview of the functions computing measures of effect size

Function MES included in function Argument Complementary hypothesis test Available CIs

mes.m g1 ‘g1’ One-sample t-test Bootstrap
U31 ‘U3_1’ One-sample t-test Bootstrap
Hedges’ g ‘hedgesg’ Two-sample t-test Bootstrap and analytical
Glass’ delta ‘glassdelta’ Two-sample t-test Bootstrap and analytical
MD ⁄ sD ‘mdbysd’ Two-sample t-test Bootstrap and analytical
requivalent (point-biserial
correlation)

‘requiv’ Two-sample t-test Bootstrap and analytical

Common language
effect size

‘cles’ Two-sample t-test Bootstrap

Cohen’s U1 ‘U1’ Two-sample t-test; Mann–Whitney U-test Bootstrap
Cohen’s U3 ‘U3’ Two-sample t-test; Mann–Whitney U-test Bootstrap
AUROC ‘auroc’ Two-sample t-test; Mann–Whitney U-test Bootstrap, bootstrap t

and analytical
RTR, LTR ‘tailratio’ Two-sample t-test; Mann–Whitney U-test Bootstrap
Rank-biserial correlation ‘rbcorr’ Two-sample t-test; Mann–Whitney U-test Bootstrap

mes1way.m g_psi ‘g_psi’ Two-sample t-test; any post-hoc test Bootstrap and analytical
Psibysd ‘psibysd’ Two-sample t-test; any post-hoc test Bootstrap and analytical
Eta squared ‘eta2’ One-way anova Bootstrap and analytical
Partial eta squared ‘partialeta2’ One-way anova Bootstrap and analytical
Omega squared ‘omega2’ One-way anova Bootstrap and analytical
Partial omega squared ‘partialomega2’ One-way anova Bootstrap and analytical

mes2way.m g_psi ‘g_psi’ Two-way anova; any post-hoc test Bootstrap and analytical
Eta squared ‘eta2’ Two-way anova Bootstrap
Partial eta squared ‘partialeta2’ Two-way anova Bootstrap and analytical
Omega squared ‘omega2’ Two-way anova Bootstrap
Partial omega squared ‘partialomega2’ Two-way anova Bootstrap and analytical

mestab.m Risk difference All MES computed
by default

Chi-square Analytical
Risk ratio Chi-square Analytical
Odds ratio Chi-square Analytical
Phi Chi-square Analytical
Sensitivity Chi-square None
Specificity Chi-square None
Positive predictive value Chi-square None
Negative predictive value Chi-square None
Binomial effect size display Chi-square None
Cramer’s V Chi-square Analytical
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researcher is likely to fail to replicate this finding and may discuss this
‘failure’ away with different mouse strains or different electrode
positions, even though it is merely a result of sampling variability and
the binary nature of decisions dictated by common practice of NHST.
By contrast, as inspection of the bottom panel of Fig. 2C reveals, even
with only 1000 data points, that Hedges’ g would likely fall in a
similar range as in the previous scenario, 0–0.2. Thus, what seems at
first glance to be a failure to replicate turns out to be quite replicable in
terms of measurement of effect size.

Example 2 – identifying discrete cell populations on the basis
of spike responses

The rat trigeminal ganglion (TG) contains a population of mechano-
sensitive neurons which respond to the mechanical stimulation of a
single whisker on the animals’ muzzle (Zucker & Welker, 1969;
Stüttgen et al., 2006). Several studies have shown that these neurons’
firing rates covary with kinematic parameters of the whisker deflection,
such as amplitude and velocity (Gibson & Welker, 1983). We were

interested to see whether these neurons form discrete, i.e. non-
overlapping subgroups, each coding for only one kinematic parameter.
We recorded the activity of single neurons from the TG in anesthetized
rats while applying a parameterized stimulus set which included 15
stimuli, made up of all possible combinations of three different
deflection amplitudes and five different deflection velocities (Stüttgen
et al., 2008). Each stimulus was presented 10 times in pseudorandom
order. A standard analysis for this kind of data is to count spike
responses to each stimulus and to subject the data to a two-way 3*5
factorial anova with amplitude and velocity as factors. We did so for
each of 22 neurons individually, and it turned out that 21 ⁄ 22 neurons
had statistically significant response modulations due to amplitude
(P < 0.05), 20 ⁄ 22 had significant modulations due to velocity and
8 ⁄ 22 showed a significant interaction of these factors. These numbers
were essentially unchanged when the significance criterion was set to
0.01 (the respective numbers are 21, 19 and 7). On the basis of this
result, one may conclude that most TG neurons code for both velocity
and amplitude, and that some show more complex response properties,
being modulated by a multiplicative interaction of the two factors.
Although this statement is formally correct, there has been no

mention of the degree to which these neurons are modulated by the
kinematic parameters. As outlined in the Introduction, the P-value
does not allow an inference as to the relative magnitude of the effects.
One measure of effect size appropriate for this kind of analysis design
is called g2:

g2 ¼ SSeffect
SStotal

ð3Þ

where SSeffect is the sum of squares between groups (treatments)
and SStotal is the overall sum of squares. The intuition behind g2 is: how
much of the total variance in the data is explained by any one factor, i.e.
amplitude, velocity or their interaction? In the present design, three
kinds of g2 can be computed, one for each of the above factors. The
sum of all three g2 cannot exceed 1 – if the sum equaled 1, all the
variance in the data would be explained by the experimental factors,
which is rarely encountered. Values of �0.1, �0.2 and ‡ 0.3 may be
roughly classified as small, medium and large effects, corresponding to
10, 20 and 30% of explained variance, but note that verbal judgments
such as ‘large’ may vary substantially across and within research fields.
We calculated g2 for amplitude and velocity for each neuron (g2 for

the interaction was negligible). The resulting scatterplot is depicted in
Fig. 3. It is obvious that there are two separable clusters of neurons,
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Fig. 3. Measures of effect size (g2) for amplitude and velocity for 22 TG
neurons (figure modified after Stüttgen et al., 2008).
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those with large (> 0.3) values for amplitude (green) and with large
values for velocity (orange). Recall that almost all of these neurons
were significantly modulated by both amplitude and velocity.
However, plotting g2 for these factors against each other reveals that
every neuron is modulated primarily by one of these factors and to a
much lesser extent by the other. For this data set, 42 ⁄ 66 P-values were
smaller than 0.001 and 38 ⁄ 66 were even smaller than 0.000001. Thus,
the size of the P-value carries hardly any implication about the
magnitude of an effect, and the exclusive use of NHST for these data
would have concealed a straightforward relationship between kine-
matic parameters and neural response types. Instead, one would have
opted erroneously for a considerably more complex scheme to explain
neural coding of kinematic events at the level of primary afferents.

Example 3 – comparing peri-event time histograms (PETHs)

Multiunit action potentials were recorded from organotypic cultures of
mouse neocortex in two different formulations of artificial cerebro-
spinal fluid (ACSF1 and ACSF2), which differed in the concentrations
of magnesium, calcium and potassium. The question was whether
action potential firing over the course of spontaneous UP states
differed between the two conditions. To this end, the onsets of UP
states were determined on the basis of the field potential (recorded with
the same electrode), and action potentials were collected in PETHs
around those time points, converted to firing frequency and averaged
for each recording (ACSF1, n = 64 recordings; ACSF2, n = 39).
Figure 4A depicts the median PETHs for both conditions. The median
firing rates obviously do not change randomly from bin to bin, but
rather follow a smooth course. A good approach would be to fit a

function to the data; for example, exponentials could be fitted to the
phases of decaying firing rates and the fitted parameter(s) used to judge
on the difference between the conditions (Motulsky & Christopoulos,
2003). However, PETHs often take more complicated forms, making
the choice of the function to fit difficult. An alternative might be a
factorial analysis (anova and ⁄ or matching MES) with treatment
(ACSF type) and time (bins) as the factors. However, both the fitting
and the factorial approaches would yield doubtful results for this data
set due to the highly non-normal distribution of the firing frequencies
in each time bin, which have a strong bias toward values at or around
zero (see Fig. 4A, inset). This might be mitigated by a transformation
of the data which bestowed approximate normality on them. A simpler
approach, practically devoid of assumptions on the nature of the data,
is based on a non-parametric measure of effect size, Cohen’s U3

(Cohen, 1988). U3 is the proportion of data points in the ‘lower’ group
(here, ACSF2, gray in Fig. 4A) which are smaller than the median of
the ‘higher’ group (ACSF1; see the toolbox’ documentation for more
information on U3). The results of the computations are presented in
Fig. 4B. For the first 260 ms post-event, U3 hovers mostly between
0.5, the zero effect value, and 0.6. Beyond 260 ms, the proportion of
scores grows more or less continuously, up to over 80% in the last bin.
With a similar trend, the 95% CIs of U3, obtained by bootstrapping,
recede from the zero effect line, confirming the notion of a more
sustained firing in the first condition. Thus, via a bin-wise comparison
of firing rates we retain temporally resolved information on the effects
of the treatment. A similar reasoning, and motivation to use MES as
primary statistics or complements, applies to, for example, recordings
from closely spaced electrodes (Hentschke et al., 2009) and other data
sets within which the variable of interest varies smoothly. P-values
would reduce the issue at hand to a series of dichotomous decisions.
The display of effect size including confidence intervals, by contrast,
provides us with the appropriate view of graded effects.

The MES toolbox

Nakagawa & Cuthill (2007) argue that three types of effect statistics
suffice for most situations: r statistics (correlation coefficients such
Pearson’s product-moment coefficient, Spearman’s rank correlation,
point-biserial and phi), d statistics (Cohen’s d or Hedges’ g) and the
odds ratio [one of three most used comparative risk measurements,
which, according to Nakagawa &Cuthill (2007), are odds ratio, relative
risk and risk difference]. These three types of MES are particularly
useful because they can be computed for pair-wise comparisons, even if
the data design is factorial (anova-type). However, in a factorial
design our primary interest often lies in overall (omnibus) effects of the
underlying factors (Example 2 above) or in focused comparisons
between more than two groups. The comparatively well-known two-
sample variants of these measures are not appropriate or applicable in
this situation. Furthermore, samples may not be normally distributed
(Example 3). Accordingly, we included MES such as g2, x2, MES for
contrasts and a selection of non-parametric effect size indices such as
Cohen’s U1 and U3 and the area under the ROC curve.
The MES toolbox is written in matlab and requires the Statistics

Toolbox. It can be downloaded from two sources, http://source
forge.net/projects/mestoolbox/ and the matlab Central File Exchange,
http://www.mathworks.com/matlabcentral/fileexchange/32398-measures-
of-effect-size-toolbox. It is accompanied by example data and an
extensive documentation and reference manual. All MES have been
condensed into four functions: mes.m for two-sample designs,
mes1way.m for one-way anova designs, mes2way.m for two-way
anova designs and mestab.m for data sets with absolute frequencies.
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Fig. 4. Comparing peri-event time histograms (PETHs) of spikes with
Cohen’s U3, a non-parametric measure of effect size. (A) Graphs representing
median PETHs of extracellular multiunit recordings from in vitro preparations
of mouse neocortex under control (black, n = 64) and treatment (gray, n = 39)
conditions. Inset – the individual data for the bin at 300–320 ms, illustrating
their non-normal distribution (same color code as for the PETHs; abscissa
offset is arbitrary). (B) Bin-by-bin values of U3 (dots) and 95% confidence
intervals (lines) obtained by bootstrapping. Dotted line at ordinate value of 0.5
corresponds to zero effect.

1892 H. Hentschke and M. C. Stüttgen
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By specifying optional arguments, the user can fully exploit the entire
repertoire and functionality of MES that the toolbox has to offer. This
includes the option to specify whether (or across which factor) the data
are dependent (repeated measures), but note that a few MES are only
defined for either dependent or independent data or implemented only
for one of these cases.

Perhaps most importantly, CIs can be computed for all MES, with
the exception of five MES included in mestab.m. For many MES,
different types of CIs are available. Those based on bootstrapping are
implemented for all MES contained in mes.m, mes1way.m and
mes2way.m; the number of iterations can be specified by the user. For
a range of MES, analytical CIs may be computed. For a subset among
these, there is a choice among ‘approximate’ and ‘exact’ intervals.
Approximate intervals are based on central v2-, t- and F-distributions,
which also underlie the computation of P-values in NHST. Exact CIs
are computed in an iterative way from the so-called non-centrality
parameter (ncp) of non-central v2-, t- and F-distributions (Steiger &
Fouladi, 1997; Thompson, 2002; Smithson, 2003; Kelley, 2007).
Formulae for a number of MES to convert ncp to CIs were taken from
these studies, as well as from Fidler & Thompson (2001). We also
wish to point out the possibility to compute standardized contrasts in
one- and two-way designs. As has been stated before (Rosenthal et al.,
2000; Kline, 2004; Nakagawa & Cuthill, 2007), in many situations the
overall effect of a treatment on several experimental groups is of
secondary interest. Contrast analysis permits the computation of MES
for focused comparisons, for example of one treatment group vs. the
weighted average of two other groups.

Table 2 provides an overview over the four functions, the MES they
provide, the related type of hypothesis test and the type(s) of CIs
available. All functions return a structure ‘stats’ as output. ‘stats’
contains fields holding the value of the requested MES, sample size,
analysis design (paired vs. unpaired), number of bootstrapping
iterations, confidence level, CIs and the computational method
underlying the CI. Furthermore, as a number of MES are computed
from the same terms that are needed to generate t- and F-values of
t-tests and anovas, respectively, mes.m produces t-statistics and
mes1way.m and mes2way.m produce full anova results tables.

Figure 5 provides a structured overview over the MES featured in
the toolbox, which may aid researchers in the selection of appropriate
MES for their specific type of question. More extensive coverage of
each MES, along with illustrations and example computations, are
provided in the documentation of the MES toolbox. The documen-
tation may be informative even for readers not familiar with matlab,
because it provides intuitive explanations, calculation formulae and
guidance for the interpretation of each MES covered.
In summary, we strongly believe that data analysis in the

neurosciences would benefit from the standard computation of MES.
We have provided three examples in which MES reveal important
aspects of data which would have been undetected, underappreciated
or dealt with in awkward ways with standard NHST. Another benefit
of using MES is meta-analysis. Nakagawa & Hauber (2011) have
recently argued that the neurosciences may benefit from a shift in
focus, from individual studies to a meta-analytic perspective. Distilling
statistical results through meta-analysis has proved immensely useful
in several fields of science, such as psychology and especially
medicine (e.g. Smith & Glass, 1977; Mann, 1990; Baigent et al.,
2005), and MES are central to that endeavor (Thompson, 2002). We
therefore feel that editorial policies encouraging or demanding the
routine use of MES (as already implemented in several psychological
and medical journals) would be advantageous. Nonetheless, we agree
with Sarter & Fritschy (2008) that partisan stances are not helpful; in
particular, a ban of NHST would probably not bear fruit, but rather
provoke bearish responses. However, at a minimum, authors should
always specify sufficiently ample detail of their data and their
statistical analyses, such that an assessment of effect size is possible,
and refrain from misuses of NHST, such as claiming the absence of an
effect on the basis of low sample sizes. Many authors do follow this
practice, and guidelines to this effect are already in place for the
European Journal of Neuroscience (Sarter & Fritschy, 2008). On top
of this, we reiterate the appeal to our colleagues to open their minds to
an alternative kind of statistics. Our hope is that the availability of
software allowing the easy and flexible calculation of MES will aid in
this endeavor, eventually improving the presentation and discussion of
neuroscientific results.
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