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Pigeons are well known for their visual capabilities as well as their ability to categorize visual stimuli at both
the basic and superordinate level. We adopt a reverse engineering approach to study categorization
learning: Instead of training pigeons on predefined categories, we simply present stimuli and analyze
neural output in search of categorical clustering on a solely neural level. We presented artificial stimuli,
pictorial and grating stimuli, to pigeons without the need of any differential behavioral responding
while recording from the nidopallium frontolaterale (NFL), a higher visual area in the avian brain. The
pictorial stimuli differed in color and shape; the gratings differed in spatial frequency and amplitude. We
computed representational dissimilarity matrices to reveal categorical clustering based on both neural
data and pecking behavior. Based on neural output of the NFL, pictorial and grating stimuli were
differentially represented in the brain. Pecking behavior showed a similar pattern, but to a lesser extent.
A further subclustering within pictorial stimuli according to color and shape, and within gratings
according to frequency and amplitude, was not present. Our study gives proof-of-concept that this reverse
engineering approach—namely reading out categorical information from neural data—can be quite
helpful in understanding the neural underpinnings of categorization learning.
Key words: categorization, avian brain, NFL, single unit recording, key peck, pigeon

Rochon-Duvigneaud (1943) defined pigeons
as animals that are nothing else but two eyes
with wings. Indeed, humans have only 40% of
the retinal axons of pigeons (Binggeli & Paule,
1969), discern fewer colors (Emmerton &
Delius, 1980), and fail to discriminate subtle
luminance differences that are easily distin-
guished by pigeons (Hodos, Bessette, Macko, &
Weiss, 1985). Pigeons are also well known
for their ability to categorize all kinds of diverse
objects like “humans” (Herrnstein & Loveland,
1964; Yamazaki, Aust, Huber, Hausmann, &
G€unt€urk€un, 2007), man-made objects (Lubow,
1974), impressionist versus cubist paintings
(Watanabe, Sakamoto, & Wakita, 1995), and
“good” versus “bad” children’s drawings
(Watanabe, 2011). Pigeons are also able to
differentially categorize pictures according to
16 different categories in parallel (Wasserman,
Brooks, & McMurray, 2015). Moreover, they
can solve cognitively challenging same versus

difference tasks (Young&Wasserman, 2001; for
a review see Wasserman & Young, 2010). But
how do pigeons master these diverse tasks?
The classical way to investigate pigeon’s

discrimination abilities is to train them to give
distinct behavioral responses to stimulus cate-
gories that were previously defined by the
experimenter. In the present study, we decided
to test a radically different procedure. We
employ a reverse engineering approach in
which we confront our subjects with various
stimuli that do not have to be discriminated.
The animals just have to peck on them to obtain
food. By simultaneously recording from visual
forebrain neurons, we plan to deduce the
inherent order of visual objects in the pigeon’s
brain.
To our knowledge, Kriegeskorte et al. (2008)

were the first to deploy this approach by using a
large number of images depicting real-world
objects; these images were shown to both
human and nonhuman primates and neural
responses were measured in the inferior
temporal cortex (IT) using fMRI and single
cell recording, respectively. Depicting the
differences between activities elicited by stimuli,
representational dissimilarity matrices (RDM)
revealed segregation between the semantic
categories of animate and inanimate objects
(Kriegeskorte et al., 2008). Hence, categorical
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information is represented on a neural level in
humans’ and monkeys’ IT—even without the
need to perform a behavioral categorization
task. The possibility of using such a method is
not restricted to the visual association cortices,
but can also be applied to frontal areas for an
analysis of segregation of eye movement direc-
tion clusters (Kiani et al., 2015).

The present study is the first to use a similar
approach in pigeons. At the brain level,
we decided to target the nidopallium frontola-
terale (NFL), a higher visual area within
the pigeon’s visual system where the tecto-
and the thalamofugal visual pathways come
together (Husband& Shimizu, 1999; Shanahan,
Bingman, Shimizu, Wild, & G€unt€urk€un, 2013;
Shimizu, Cox, & Karten, 1995). An overview of
the visual pathways in the pigeon brain, includ-
ing the position of the NFL, is illustrated in
Figure 1.

Thus, the present study explores the hypoth-
esis that neurons of the NFL distinguish
between different categories of visual stimuli
without any task-dependent need of discrimi-
nation. As our experiment is the first of its kind
in birds, we decided to use artificial stimuli of

low visual complexity to see whether we can find
such clustering of NFL activity that reflects
categorical structures. These artificial stimuli
consist of pictorial stimuli differing in color and
shape (see Fig. 2A) as well as gratings differing
in spatial frequency and amplitude (see Fig. 2B)

Fig. 1. Visual pathways in the pigeon brain. Avian tecto-
(yellow) and thalamofugal pathways (blue) are homologous
to the mammalian extrageniculocortical and geniculocort-
ical pathways, respectively. Avian and mammalian systems,
however, differ at the functional level. The avian tectofugal
pathway is mainly responsible for both object and motion
vision in the frontal visual field. Information travels from
the eye to the optic tectum, the nucleus rotundus (nRt)
in the thalamus, the entopallium in the telencephalon
(primary visual area), and then to multiple higher visual
areas of which our targeted area, the nidopallium
frontolaterale (NFL), is shown. The thalamofugal pathway
is mainly directed towards the lateral field of view.
Information travels from the eye to the nucleus geniculatus
lateralis, pars dorsalis (GLd) in the thalamus, to the visual
wulst in the telencephalon (primary visual area) and then to
the NFL.

Fig. 2. Stimuli and behavioral paradigm. (A) All
25 pictorial stimuli used. Stimuli differ according to color
(blue, yellow, green, red, turquoise) and shape (octagon,
stylized flower, triangle, circle, square; same surface area).
(B) All 25 grating stimuli used. Stimuli differ according to
spatial frequency (0.11, 0.23, 0.34, 0.46, 0.58 cpd) and
amplitude (0.2, 0.4, 0.6, 0.8, 1.0). (C) Sequence of one trial.
The initializationkeywas visible for up to 2 s anddisappeared
if pecked once. After a 0.2 s delay, one of 50 sample stimuli
(pictorial or grating stimuli) was shown for a fixed interval of
2 s and had to be pecked at least once. After another 0.2 s
delay, the initialization key was presented again for up to 2 s
andhad to be pecked once. After pecking at all three stimuli,
a food reward was delivered and the intertrial interval (6 s)
followed.
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to cover a broad set of properties within these
types of simple stimuli. Using these simple
stimuli, we aim to unravel basic principles of
neural coding.

Method

Subjects
The subjects were three adult homing

pigeons (Columba livia) obtained from local
breeders that had previously participated in
unrelated experiments. They were housed in
individual wire-mesh cages with a 12 to 12 light-
dark cycle beginning at 08.00 hr. They were
food-deprived and maintained at 80-90% of
their free-feeding body weight and fed with
a mixture of different grains. The subjects
were kept and treated in accordance with the
National Institute of Health Guide for Care for
LaboratoryAnimals and thenational authorities
ofNorth-RhineWestphalia,Germany, approved
the experiment.

Apparatus and Stimuli
The experiment was conducted in a custom-

built operant chamber (35� 35� 35 cm) with
three horizontally aligned pecking keys
(4� 4 cm, 17 cm above the floor) and a
centrally located food hopper that delivered a
food reward upon responding. Only the center
pecking key was used in this experiment. An
LCD flat screen monitor was mounted behind
the pecking keys to present the stimuli. The
stimuli consisted of 50 artificial images, 25 pic-
torial stimuli of colored geometric shapes (see
Fig. 2A) and 25 grating stimuli (see Fig. 2B).
The shapes used were an octagon, a stylized
flower, a triangle, a circle, and a square of the
same surface, each colored in blue, yellow,
green, red, and turquoise (RGB color space).
The gratings were modulated in frequency
and amplitude. Five different spatial frequen-
cies (0.11, 0.23, 0.34, 0.46, and 0.58 cycles
per degree, cpd) were each paired with five
different amplitudes (0.2, 0.4, 0.6, 0.8, and 1.0).
The overall grayscale value was equal for all
grating stimuli.

Behavioral Task
Pigeons were tested once a day. Stimuli were

shown in ten consecutive blocks, each consist-
ing of a single presentation of every stimulus in
the entire set. The stimuli within each block

were randomized prior to each session, such
that each session consisted of 500 trials and
each stimulus was presented 10 times. A
schematic drawing of the behavioral task is
depicted in Figure 2C. Each trial began with an
initialization key that was visible for 2 s and
which disappeared when pecked once. After a
0.2 s delay, one sample stimulus was presented
for a fixed interval of 2 s. The pigeon had to
peck at the stimulus at least once. After another
0.2 s delay, the initialization key was again
presented for 2 s and disappeared when pecked
once. Only if the pigeon had pecked at all three
stimuli, 2 s access to food accompanied by
turning on the feeding light followed. Food
reinforcers were delivered with a probability of
55–70%, adjusted in accord with the weight and
performance level of the pigeon. After non-
reinforced trials, the feeding light was turned
on as a conditioned reinforcer. After the
reinforcer period, a 6 s intertrial interval (ITI)
followed before the next trial started. If the
pigeon failed to peck at either one of the
initialization keys or the actual stimulus, then
the trial was aborted and the ITI followed.
Custom-written Matlab (MathWorks, Natick,
MA, USA) code (Rose, Otto, & Dittrich, 2008)
controlled all experimental hardware.

Surgery
After training on the task, pigeons were

implanted with custom-built microdrives (Bilkey
& Muir, 1999; Bilkey, Russell, & Colombo, 2003;
Starosta, G€unt€urk€un, & St€uttgen, 2013; Starosta,
St€uttgen,&G€unt€urk€un, 2014)with sevenelectro-
des made of 25mm formvar coated nichrome
wires (Science Products GmbH, Hofheim,
Germany) and one additional 76mm heavy
polyimide coated stainless steel wire serving as
reference (francoCorradi, Milano, Italy) that
were connected to microconnectors (Omnetics
Connector Corporation, Minneapolis, USA). All
pigeons were implanted with one microdrive
each in both the right and left hemisphere of the
brain. Pigeons were initially anesthetized with a
mixture of ketamine and xylazine 7:3 with
0.075ml per 100 g body weight. Anesthesia was
maintained with isoflurane during the whole
procedure. Feathers on the scalp and overlaying
theearswere cutand theanimalswereplaced ina
stereotaxic apparatus. The scalp was cut and
retracted to expose the skull. Six stainless steel
screws (Small Parts, Logansports, USA) were
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placed into the skull to hold the implant. A hole
was drilled above the NFL at APþ12 andML�6
(Karten & Hodos, 1967). The tips of the
electrodes were then lowered into the brain to
position themabove theNFL.Anadditional hole
in the skull was made to insert a 200mm teflon
coated silver wire (Science Products GmbH,
Hofheim, Germany) with its tip melted to a ball
that served as ground for electrophysiological
recordings. Dental acrylic was used to attach the
microdrives to the skull. The incisionwas sutured
and covered with antibiotic ointment. The birds
were returned to the home cage when fully alert
and mobile. The pigeons received analgesics
(Carprofen, 10mg/kg) for 3 days. They were
allowed to recover with unlimited access to food
for at least 7 days before recording sessions
started.

Neural Recording
We recorded from both hemispheres in the

three birds. In every session, we stored theoutput
of eight electrodes, one serving as reference.
Signals were fed through a miniature preampli-
fier (10x), then amplified 1,000x and filtered
online (300Hz high-pass filter, 5 kHz low-pass
filter; Multi Channel Systems MCS GmbH,
Reutlingen, Germany), and digitized using an
analog-to-digital converter (Micro 1401 mkII,
Cambridge Electronic Design, Cambridge, UK).
Neural activity was recorded with Spike2
Version 7.06a (Cambridge Electronic Design,
Cambridge, UK). Spike sorting was conducted
offline using amplitude thresholds for initial
spike detection and principal component analy-
sis for manual sorting. Sorting quality was
examined with custom-written Matlab code. We
adopted a conservative approach to classify
neural activity as originated from ‘single units’.
Single units had to show a clearly distinguishable
cluster in principal component space, show no
sign of overlapping multiple units in the
waveform overlay and density plots, show a
symmetrical, unimodal distribution of peak
waveform amplitudes without evidence of false
negative classifications, have interspike intervals
larger than 1ms, and a signal-to-noise ratio of at
least 2. The signal-to-noise ratio was calculated as
the difference between the maximum and
minimum of the averaged waveform, divided
by the central 95% range in the noise distribu-
tion. Additionally, we visually checked for
movement related artifacts (e.g., from wing

flapping and key pecking) and by inspecting
peri-peck time histograms for peaks of spiking
activity near time point 0. Materials, recording,
and spike sortingprocedurehavebeendescribed
in greater detail by Starosta et al. (2013, 2014).

Data Analysis
To analyze our data, we used custom-written

Matlab code. For each pigeon, we constructed a
set of response vectors assigned to each
stimulus, where the entries represented the
activity of one recorded cell. The activity was
calculated as the average number of spikes
within the 2 s window of each particular
stimulus presentation based on all completed
presentations of this stimulus within a session.
To account for different firing rates of cells,
the results were taken after vector normaliza-
tion across all activity measurements for one
cell. Based on these vectors, an individual RDM
matrix was separately computed for each
pigeon, and finally averaged across all pigeons.

The RDM (Figs. 4A and 5) shows the percen-
tiles of 1-rs, where rs is the pairwise Spearman’s
rank correlation coefficient of the response
vectors. Figure 3 explains the rationale behind
the RDMs. In the RDM, neural output to each
stimulus is correlated with every other stimulus.
The diagonal depicts comparison of each
stimulus with itself, resulting in the absence of
dissimilarity (i.e., total similarity, black color).
Across the diagonal, the RDM is mirrored.
Looking only at the space below the diagonal,
the upper left triangle depicts comparison
within the pictorial stimulus set. The lower right
triangle depicts comparison within the grating
stimulus set. Within the stimulus sets, lower
dissimilarity (i.e., higher similarity) is indicated
bydarker shades of gray. The lower left rectangle
depicts the comparison between both stimulus
sets. Here, higher dissimilarity (i.e., lower
similarity) is indicated by lighter shades of gray
(Fig. 3).

We used bootstrap resampling of the stimulus
set to answer the question whether significant
pairwise similarity level differences occur among
the three groups: (a) similarities of items within
the pictorial stimulus set, (b) within the grating
stimulus set, and (c) comparisons of stimuli
between both sets (cf. Fig. 3). This simulates the
expected distribution of the mean of dissimilar-
ity measures by repeated sampling from the
observed data.
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Weperformed1,000 iterations for eachgroup,
each time sampling n data points from the
observed n data points under the diagonal of
the percentile matrix in each group. Mean
and variance were calculated on the basis
of the obtained samples for each group,
respectively. Our test statistic was the mean of
percentile points within each of the three
groups, computed solely on the corresponding
values under the diagonal. As the bootstrap test
is optimistic in estimating differences, we set
our parameters to conservative values (p< .001,
1000 iterations). Additionally, our pairwise
correlations (1-rs) were used as distance meas-
urements to perform classical multidimensional
scaling to visualize our results in two-dimensional
space.
We produced three generalized linear model

regressions (GLM) to separately test the
predictive capability of the categories pictorial
and grating, shape and color, as well as
frequency and amplitude on our dissimilarity
measures (1-rs), and thus the pigeons’ categor-
ical representations. For the first GLM, a vector

was computed using all dissimilarity measures
under the diagonal as a dependent variable. As
an independent variable we computed a binary
prediction vector depicting the value 1 within-
pictorial and within-grating stimulus sets and
the value 0 between both sets. Doing so, we
can answer the questions whether dissimilarity
measures differ within stimulus sets and
between stimulus sets. For the second GLM,
only dissimilarity measures within the pictorial
stimuli were examined. A binary prediction
vector was computed with the value 1 for same
color and the value 0 for different color as
well as a prediction vector with the value 1 for
same shape and the value 0 for different
shape. In doing so, we can examine what
predictive capability the properties color and
shape have on categorical representation. For
the third GLM, only dissimilarity measures
within the grating stimuli were examined.
Here, two binary prediction vectors coded
for frequency and amplitude to examine what
predictive capability these properties have on
the pigeons’ categorical representations.

Fig. 3. Explanation of representational dissimilarity matrices. The diagonal depicts comparison of each stimulus with
itself, resulting in the absence of dissimilarity, that is, total similarity (black color). Across the diagonal, the RDM is
mirrored. Looking only at the space below the diagonal, the upper left triangle depicts comparison within the pictorial
stimulus set. The lower right triangle depicts comparison within the grating stimulus set. Within stimulus sets, lower
dissimilarity, that is, higher similarity, is indicated by dark gray color coding. The lower left rectangle depicts comparison
between both stimulus sets. Here, we indicate higher dissimilarity, that is, lower similarity (light gray).
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Moreover, we undertook the same steps to
analyze stimulus similarities based on the
number of pecks in the 2 s window of stimulus
presentation. Note that pigeons were required
to peck at least once at the stimulus during this
time for it to be counted as a valid trial and to
be analyzed, but they pecked an average of
7.95 times (standard deviation¼ 2.84) in this
time period.

Results

We recorded from a total of 33 single units
from five hemispheres in three birds (3 from
the left and 7 from the right hemisphere of the
first bird, 10 from the right hemisphere of the
second bird with no suitable units from the left
hemisphere, and 7 from the right and 6 from
the left hemisphere of the third bird). The cells
fired at a mean of 4.93Hz, ranging from 0.3 to
28.4Hz.

Figure 4A shows the RDM consisting of all
pairwise dissimilarity values (percentile of 1-rs;
dark gray represents low, light gray represents
high dissimilarity) based on the neural
responses. Along thediagonal, theneural activity
pattern of each stimulus is compared to itself,
resulting in total similarity (black). In Figure 4A,

pictorial stimuli are arranged according to color.
Hence, the first five lines represent the five
blue pictorial stimuli, etc. Grating stimuli are
arrangedaccording to spatial frequency. Figure5
shows the sameRDM, but arranged according to
shape and amplitude. Note that this is only a
difference in presentation, the content is the
same. Figure 4B shows the average percentile
points with the standard deviation revealed from
the bootstrap resampling for the within-pictorial
stimulus set, the within-grating stimulus set, and
between both sets (cf. Fig. 3). All between-group
differences are significant (p < .001) according
to the conducted bootstrapping test. It can be
seen that the dissimilarity within the pictorial
stimuli is lowest, followed by the dissimilarity
within the gratings, which are both far below the
overall dissimilarity value between both sets.
Thus, even about 30 neurons are sufficient to
reveal a differential representation of pictorial
stimuli and gratings in the pigeon brain.

The first GLM revealed a significant influ-
ence of stimulus set (pictorial and grating) on
categorical representation (i.e., dissimilarity
measures: b¼ −14.19, t¼ −9.25, p< .001). The
second GLM showed no influence of either
color (b¼ 0.98, t¼ 0.23, p¼ .82) or shape
(b¼ 3.80, t¼ 0.86, p¼ .39) on categorical

Fig. 4. (A) Representational dissimilarity matrix. For each pair of stimuli, the gray value codes dissimilarity of the
response patterns in the pigeons’NFL (dark gray: low dissimilarity, light gray: high dissimilarity). Dissimilarity is measured
in percentile of 1-rs (Spearman’s rank correlation coefficient). Note that in the diagonal, the neural activity pattern of each
stimulus is compared to itself, resulting in total similarity. Thirty-three single units from five hemispheres of three pigeons
were recorded. The pictorial stimuli are arranged by color, the grating stimuli are arranged by frequency. (B) Average
percentile points within-pictorial stimulus set, within-grating stimulus set, and between both sets. Error bars show standard
deviation from bootstrap resampling. All group differences are significant with p< .001.
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representation within pictorial stimuli. The
third GLM revealed no influence of either
frequency (b¼ −3.32, t¼ −0.75, p¼ .45) or
amplitude (b¼ −1.25, t¼ −0.28, p¼ .78) on
categorical representation of the grating
stimuli.
Figure 7A shows multidimensional scaling

based on spikes. Each stimulus is depicted as a
small picture in the two-dimensional distance
space. As there was less dissimilarity within the
pictorial stimulus set than within the grating
stimulus set (cf. Fig. 4B), we see that the
pictorial stimuli cluster more tightly together in
this plot than the grating stimuli.
As explained above for the neural data, the

behavioral data (pecking responses) can be
analyzed in a similar manner. The first bird
pecked at each stimulus on average 4.85 times
(standard deviation¼ 0.19), the second bird
11.66 times (standard deviation¼ 0.38), and the
thirdbird 7.35 times (standard deviation¼ 0.19)
in the 2 s timewindow. Figure 6A shows theRDM
of pecking activity averaged across all birds.
Figure 6B shows percentile points within the
pictorial stimulus set, within the grating stimulus
set, and between both sets. Percentile points
within the pictorial stimulus set are significantly
different than between both sets. Percentile

points within the grating stimulus set also differs
significantly from between both sets (all
p< .001). Percentile points within the pictorial
stimulus set do not differ significantly from
within the grating stimulus set (p¼ .18).
Figure 7B showsmultidimensional scaling based
on pecks. Each stimulus is depicted as a small
picture in the two-dimensional distance space.
As is already apparent in Figure 6, there is no
clear sub-clustering according to stimulus
dimensions.

Discussion

In the current study, we documented categor-
ical object representation in a visual association
area of the avian brain. Categories were deduced
from the spike trains of the recorded neurons
without conditioning the birds to discriminate
one predefined group of stimuli from another.
Ourdata reveal that, in theNFL, pictorial stimuli
were differently represented from gratings.
Neither pictorial nor grating stimuli revealed
sub-clustering according to color or shape, or
frequency or amplitude, respectively. We con-
ducted a similar analysis with the number of
pecks to the stimuli in the 2 s time window of
stimulus presentation as a behavioral marker.

Fig. 5. As in Figure 3A, but pictorial stimuli are arranged by shape, the grating stimuli are arranged by amplitude.
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This analysis revealed similar, but less differenti-
ated categorical clustering.

Thus, reverse engineering of categorization
in birds allows us to draw three main con-
clusions. First, an RDM analysis reveals object
categorizations in the pigeon brain that are
independent of previous conditioning along
these stimulus dimensions. We are able to
show categorization at a neuronal level without

forcing a predefined structure with differential
reinforcement contingencies. Second, stimulus
clustering based on peck or spike frequencies
showed overlapping results; yet, even with
our small number of recorded neurons,
spike frequencies resulted in sharper category
borders. This finding shows that categorical
clustering is present in a higher visual structure
—namely the NFL—that is at least partially

Fig. 7. (A) All 50 stimuli are arranged so that distance reflects similarity of NFL response pattern (multidimensional
scaling, dissimilarity 1-rs, Spearman’s rank correlation coefficient). Stimuli depicted close to each other elicited similar NFL
response patterns, stimuli depicted far away from each other elicited dissimilar response patterns. (B) All 50 stimuli are
arranged so that distance reflects similarity of pigeons’ pecking behavior (multidimensional scaling, dissimilarity 1-rs,
Spearman’s rank correlation coefficient). Stimuli depicted close to each other elicited similar pecking behavior, stimuli
depicted far away from each other elicited dissimilar pecking behavior.

Fig. 6. (A) RDMbased onpecking data. For each pair of stimuli, the gray value codes dissimilarity of the pigeons’ pecking
behavior (dark gray: low dissimilarity, light gray: highdissimilarity).Dissimilarity ismeasured inpercentile of 1-rs (Spearman’s
rank correlation coefficient). Data is based on 21 recording sessions. (B) Average percentile points within-pictorial stimulus
set, within-grating stimulus set and between both sets. Error bars show standard deviation from bootstrap resampling. Both
the within-pictorial and the within-grating stimulus sets are significantly different from between both sets (p< .001).
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independent of the behavioral level. Third,
we see this method as a possible new window
into the details of categorical representation,
regardless of whether novel objects are used, as
in our study, or whether conditioned stimuli are
employed, as in most category learning experi-
ments. Our approach can be viewed as a new
tool to explore categorical representation at a
solely neural level.
We did not force the animals to learn a

specific behavioral response to a stimulus
category to solve a task. Thus, the clusters that
we obtained are driven by a combination of
stimulus input statistics and possible pre-wired
object representations in the bird brain. Visual
characteristics can explain categorization pro-
cesses at both the basic and superordinate
level (Gale & Laws, 2006; Gale, Laws, Frank, &
Leeson, 2003). Moreover, input statistics can
even explain categorization of natural scenes
and their representation in the human visual
cortex (Stansbury, Naselaris, & Gallant, 2013).
Thus, the present finding could simply be based
on the perceptual similarity of category mem-
bers. A simple form of pattern matching
would not need an internal conceptualization
of categories in the pigeon’s brain. In line
with the above studies, pigeons perceive mem-
bers of the same basic level categories as more
similar than members of different basic catego-
ries (Astley & Wasserman, 1992).
The pictorial and the grating stimuli differed

in two dimensions each: namely, color and
shape, and frequency and amplitude, respec-
tively. These dimensions did not differ in their
ability to predict their neural representation.
On a behavioral level, pigeons generally pay
more attention to color than to shape in a
selective attentionparadigm(Farthing&Hearst,
1970) and rely more on color than on shape
information when solving a matching-to-sample
task (Kirsch, Kabanova, & G€unt€urk€un, 2008). In
primates, a parallel representation of human
andmonkey faces at both behavioral and neural
levels can be shown. Confusion errors indicate
that human and monkey faces are perceived as
highly similar at the behavioral level (Sands,
Lincoln, & Wright, 1982), and highly similar
representations based on neural output of the
IT to human and monkey faces is also seen
(Kriegeskorte et al., 2008). Similar to the
corresponding of visual judgment and visual
neural responses in the primate IT, it could have
been expected that the dimension of color

would have had a bigger influence on the neural
representation in line with behavioral data in
the pigeon. However, a similar correspondence
as in primate IT could not be shown for the
avian NFL.
Previous studies at the behavioral level

already prove that categorical information
modifies animal behavior even without the
explicit need to do so and without reinforce-
ment contingencies explaining the results.
Monkeys make more confusion errors in a
same–different judgement when two stimuli
belong to the same category; from a set of
natural images, pictures depicting humans and
monkeys cluster together, as well as different
types of fruit (Sands et al., 1982).Hence, objects
within these categories are perceived to be
more similar than across categories. To apes,
pictures depicting humans show even higher
intrinsic reinforcing properties than pictures
without humans (Fujita & Matsuzawa, 1986).
But not just monkeys and apes use categorical

information to modify behavior; pigeons do
so, too. Astley and Wasserman (1992) trained
pigeons in a successive go/no go discrimination
paradigm. Pigeons were more likely to respond
to S− stimuli from the same category as the Sþ
stimuli, than to S− stimuli from a different
category. In addition, pigeons seem to perceive
stimuli within categories as more similar than
between categories, like natural versus artificial
objects (Lazareva, Freiburger, & Wasserman,
2004, 2006; Lazareva & Wasserman, 2009).
Moreover, pigeons learn semantic categories
(e.g., “cat”or “flower”)morequickly thanrandom
pseudocategories (Wasserman, Kiedinger, &
Bhatt, 1988; for a review see Soto & Wasserman,
2014). Thus, pigeons categorize and use the
categorical content of visual stimuli without being
specifically trained to do so.
Pigeons are also able to categorize flexibly at

both the basic level (e.g., humans, flowers,
chairs, cars) and the superordinate level (e.g.,
natural and artificial) within the same task and
with the same stimuli (Lazareva et al., 2004,
2006; Lazareva & Wasserman, 2009). Pigeons—
as well as children—show an advantage of
categorization at the basic level compared to
the superordinate level. This effect, however,
disappears with increasing between-category
similarity of the basic-level categories that
form the superordinate category (Lazareva,
Soto, & Wasserman, 2010). Whereas basic level
categories rely heavily on perceptual similarity,
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superordinate categories very likely do not
(Hampton, 2001). Therefore perceptual simi-
larity alone cannot account for pigeon’s cate-
gorization abilities—more abstract and
functional relationships also take part.

We see our approach and our findings as a
missing link for recent theoretical develop-
ments in the field of categorization learning.
The “Common Elements Model” of Soto and
Wasserman (2010) is an especially relevant
theoretical account that combines two strands
of experimental findings. On the one hand, this
theory assumes that the core of categorization
learning rests on the identification of common
stimulus elements within the wide diversity of
objects that are perceived. Since every stimulus
is constituted by a finite set of representational
elements, two different stimuli can share some
of these features. The perceptual similarity
between these stimuli would then be a function
of the proportion of shared elements. The
second strand of evidence concerns error-
driven learning rules, like the one of Rescorla
andWagner (1972), that was later implemented
in models that code for neuronal prediction
errors (Schultz & Dickinson, 2000). Here, it is
supposed that learning is driven by a difference
between the actual outcome of an organism’s
own actions and its predicted outcome, result-
ing in a prediction error. Dopaminergic neu-
rons appear to code prediction errors and to
broadcast them as global reinforcer or teaching
signals to diverse brain structures (Montague
et al., 2004). It is conceivable that common
elements between rewarded objects could be
identified as salient category-defining cues by
such a broadcasted prediction error. The
presence of such common cues in a novel
object would then bias the decision of the
animal toward accepting this object as member
of the reinforced category.

The current finding of neural clustering of
basic common elements would be predicted by
the Common Elements Model. Because neu-
rons in these clusters are often coactivated
when objects containing these elements are
perceived, it is likely that they develop stronger
synaptic weights within the cluster (Wallace &
Kerr, 2010). As a result, common elements of
various objects that are strengthened during
category learning by reinforcer-based predic-
tion errors could specifically associate clusters
of neurons that code for certain basic visual
features with the reinforced category. Thus, the

neural clusters discovered in our study could act
as basic constituting elements for the neural
fundaments of category learning.

Our study can thus be deemed to be a
proof-of-concept for a new approach that sees
the world from the viewpoint of pigeon brains.
The next logical steps would be twofold. First,
we plan to study the presence of such neural
clusters in various real world objects to reveal
the common basic elements of such stimuli
(Kiani, Esteky, Mirpour, & Tanaka, 2007).
Second, and most importantly, we want to
discover the changes in coding for such
basic elements during the course of various
category learning tasks. Such experiments
could combine the rich behavioral (Cook,
Patton, & Shimizu, 2013; Lazareva et al., 2004;
Soto & Wasserman, 2010) and neurobiological
(G€unt€urk€un, 2005, 2012; Shimizu, Patton, &
Husband, 2010) traditions of studies on avian
learning and cognition.
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