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a b s t r a c t

Modern theoretical accounts on reward-based learning are commonly based on reinforcement learning
algorithms. Most noted in this context is the temporal-difference (TD) algorithm in which the difference
between predicted and obtained reward, the prediction-error, serves as a learning signal. Consequently,
larger rewards cause bigger prediction-errors and lead to faster learning than smaller rewards. Therefore,
if animals employ a neural implementation of TD learning, reward-magnitude should affect learning in
animals accordingly.

Here we test this prediction by training pigeons on a simple color-discrimination task with two pairs
of colors. In each pair, correct discrimination is rewarded; in pair one with a large-reward, in pair two
with a small-reward. Pigeons acquired the ‘large-reward’ discrimination faster than the ‘small-reward’
discrimination. Animal behavior and an implementation of the TD-algorithm yielded comparable results
with respect to the difference between learning curves in the large-reward and in the small-reward condi-
tions. We conclude that the influence of reward-magnitude on the acquisition of a simple discrimination
paradigm is accurately reflected by a TD implementation of reinforcement learning.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Successful behavior depends on establishing reliable predic-
tions about future events. To select appropriate actions, humans
and other animals need to learn which sensory events predict dan-
gers or benefits and which actions improve or worsen the situation
of the animal. This learning often relies on positive (reward) or neg-
ative feedback (punishment). The neural basis of feedback-based
learning is highly conserved across species and much of the basic
neural organization in different vertebrate species resembles each
other [38,12]. Countless research has been dedicated to under-
standing the computational principles mediating feedback-based
learning and numerous models have been devised to describe these
principles mathematically [36,8]. Modern, theoretical accounts
on feedback-based learning are mostly centered on reinforce-
ment learning algorithms; the most prominent of these is the
temporal-difference (TD) algorithm [36,37], which has been suc-
cessfully used as a model for behavioral and neural responses
during reward-based learning [21,31]. TD learning is an extension
of the Rescorla–Wagner (or also the Widrow–Hoff) learning rule,
with a more detailed representation of time [36,37]. We used the TD
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model in this study because it is widely used in computational neu-
roscience and because it is well integrated into machine-learning
theory including action selection in decision making.

In TD-algorithms, time is often divided into discrete steps and
for each time step the amount of predicted future reward is deter-
mined on the basis of sensory stimuli. A comparison of predicted
and obtained reward yields a prediction error signal with three
basic characteristics: (1) an unexpected reward generates a pos-
itive prediction error indicating that more reward was obtained
than was predicted, (2) omission of a predicted reward generates a
negative prediction error indicating that less reward was obtained
than was predicted, and (3) obtaining a fully predicted reward gen-
erates no prediction error. This prediction error signal is in turn
used to update the reward prediction of sensory stimuli that pre-
ceded the reward; a positive prediction error leads to an increase
in reward prediction, a negative prediction error to a decrease in
reward prediction [31,33]. Through these mechanisms TD learning
can be used to associate a stimulus with a reward (as in classical
conditioning) [25], to associate an action with a reward (as in oper-
ant conditioning) [22,1] or also to cause extinction of a previously
formed association [26].

The TD-algorithm gained popularity, since the activity of
dopaminergic neurons located in the ventral tegmentum and
substantia nigra pars compacta of mammals resembles the TD pre-
diction error signal. The dopaminergic system is frequently termed
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the ‘reward-system’ of the brain and numerous theories have been
devised on its exact role in reward. The most prominent theories
include reinforcement [35], incentive salience [2] and habit forma-
tion [10]. Despite the discussion on the behavioral role of dopamine,
there is clear evidence that the activity of dopaminergic neurons
bears striking resemblance to the TD error signal. The responses
of dopaminergic neurons show positive and negative prediction
errors [21,31,25] and comply with several assumptions of learn-
ing theory [40]. One important prediction of the TD-algorithm is
that the error signal is dependent on the size of the reward; a big
unexpected reward will generate a bigger error signal than a small
unexpected reward. Hence, bigger rewards lead to faster learning
than smaller rewards.

The influence of reward-magnitude on animal behavior has
previously been investigated with regards to several questions,
for example reward-discriminability [7,14,15,17,24], motivation
[4–6,9,19,43] and choice behavior [18]. In addition, it has been
evaluated in the light of response-rates during acquisition
[4,7,13,20,43], and reversal [19]. However, whether the influence
of reward-magnitude on learning-rate complies with the predic-
tions of the TD-model has not yet directly been investigated.
Such a test requires the use of error-rates instead of measures of
response-strength in order to avoid measuring overall differences
in performance due to motivational differences [5,6]. Here we test
whether the acquisition of a color-discrimination is modulated by
the magnitude of contingent reward and relate our findings to an
implementation of the TD-model.

2. Materials and methods

2.1. Subjects

Twelve naive homing pigeons (Columba livia) with body weights ranging from
330 g to 490 g served as subjects. The animals were housed individually in wire-mesh
cages inside a colony room, had free access to water and grit and during experiments
they were maintained on 80% of their free-feeding body weight. The colony room
provided a 12 h dark–light cycle with lights on at 8:00 and lights off at 20:00. The
experiment and all experimental procedures were in accordance with the National
Institute of Health guidelines for the care and use of laboratory animals and were
approved by a national committee (North Rhine-Westphalia, Germany).

2.2. Apparatus and stimuli

All training and testing was conducted in an operant chamber, controlled via PC
and parallel-port interface by Matlab (the Mathworks Inc.) and the Biopsychology
Toolbox [29]. Situated on the front panel of the chamber were four pecking keys,
transparent, circular switches of 2.5 cm diameter, behind these was a TFT-Monitor
(Acer AL1511) used for presentation of the stimuli. Two pecking keys were placed
on the sides, 14 cm above the two feeders; the other keys were placed centrally, one
above the other (8 cm distance, the lower key 18 cm above the floor). The stimuli
consisted in a full back-illumination of a given pecking key, either in white or in one
of four basic colors (red, green, blue, yellow). These stimuli were always presented
in the combinations red–green and blue–yellow, one color of each pair serving as
S+, the other as S−. For each bird, one combination was paired with the chance of
gaining a large-reward, the other with the chance of gaining a small-reward. For
each animal one feeder gave access to grain for 4.0 s and the other for 1.5 s these
served as large- and small-rewards, respectively. Mixed grain was used as reward.
All contingencies (the color of the S+, color-pair and reward-size, reward-size and
side of the reward) were balanced between the animals.

2.3. Behavioral task

The birds were trained on two distinct tasks, on a simple discrimination between
a large- and a small-reward and on a simple discrimination of basic colors. During
pre-training the animals were trained in an autoshaping procedure to respond to the
pecking keys, thereafter they were trained on an operant conditioning (FR1) sched-
ule. The series of events was similar in both paradigms, after an inter-trial interval
of 10 s the left or right pecking key was illuminated in white for 9 s. A peck to the
illuminated key resulted in a reward delivered by the feeder situated below the
pecking key. For each animal, one feeder always delivered the large-reward, giving
access to food for 4.0 s, the other always delivered the small-reward, giving access
to food for 1.5 s; the side of the ‘good’ and the ‘bad’ feeder was balanced between
animals. Omission of a response was rewarded in the autoshaping-trials but mildly

Fig. 1. The behavioral task. (A) Reward-choice trial, the animals learn to associate a
side-key with the corresponding feeder and the corresponding reward-magnitude.
A response on the left key will result in reward-delivery on the left feeder, each
animal has a ‘good’ and a ‘bad’ feeder that will always deliver the large- and small-
rewards, respectively. (B) A color-choice trial with large-reward; choice of the S++
(blue key) results in the large-reward, choice of the S− (yellow key) and response
omission result in a mild punishment. (C) A color-choice trial with small-reward;
choice of the S+ (green key) results in a small-reward, choice of the S− (red key)
and response omission result in a mild punishment. All contingencies are balanced
between the animals.

punished with 10 s lights off in the FR1-trials. When the animals showed stable
pecking-responses, training on the reward-choice commenced (Fig. 1). In these tri-
als, an inter-trial interval of 10 s was followed by the illumination of both side-keys
in white light. Response to either key was rewarded by the corresponding feeder
below it. Choice of the side-key thus determined the feeder that delivered a reward
and consequently the duration of access to food. Omission of a response was mildly
punished with 10 s lights off.

After the criterion, three consecutive days with at least 80 percent choice of the
large-reward, was reached the animals were trained on the color-discrimination
(Fig. 1). In each session, reward-discrimination trials and color-discrimination trials
were presented in a block-wise fashion (10 trials reward-, 20 trials color-, 10 trials
reward-, 20 trials color-discrimination). Color-discrimination trials were separated
by a 10 s inter-trial interval after which the choice stimuli were presented on the
central pecking keys. Correct response to S++ resulted in a large-reward, correct
response to the S+ in a small-reward. Response to S− and omission of a response
were mildly punished with 10 s lights off.

2.4. Data analysis

Animal behavior was analyzed with respect to differences in learning on the
large-reward and small-reward conditions. All analysis was performed using the
percentage of correct trials in a session. Two distinct measures were used: a direct
comparison of the learning curves and the number of sessions required to reach
criterion. The direct comparison was performed using a Wilcoxon signed-rank test.
The other measure, sessions to criterion, was evaluated for a criterion of 75% correct.
A paired Student’s t-test was used for significance-testing between the conditions.

The comparison of behavioral and modeling data was performed with respect
to the difference in learning on the large-reward and learning on the small-reward
conditions. For this comparison, the mean performance of all animals for small-
reward and large-reward stimuli was calculated for each day. The small-reward
curve was then subtracted from the corresponding large-reward curve. Performing
this calculation resulted in a difference-curve for the behavioral data and one for the
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modeling data. Correlation coefficients were determined between these curves. This
approach allowed comparing the influence of reward-magnitude on learning-rates
in the behavioral date with the influence reward-size had in the model.

2.5. Modeling

To see whether the behavioral data matches the predictions of canonical models
of animal behavior we implemented a reinforcement learning algorithm. We used
a standard actor-critic architecture that employs TD learning.

The critic component learns to predict future rewards on the basis of sensory
stimuli. A complete serial compound stimulus representation was chosen in which
the occurrence of a stimulus was represented in a state vector s. Usually, this vector
contains only zeros, but with stimulus onset the first component is set to ‘1’. With
each discrete time step this ‘1’ is shifted to the next component such that component
i has the value of ‘1’ if the stimulus onset was exactly i − 1 time steps ago. The length
of the vector determines for how long the stimulus onset can be ‘remembered’. The
value of a stimulus is estimated with the help of weight vector w that has the same
length as the state vector. The weight vector is modified during learning and is used
at each discrete time step t to form reward predictions P(t) = s(t) · w(t), where ‘·’ is
the dot product.

Changes in the reward prediction in two successive time steps (P(t − 1) − P(t))
provide an estimate of the reward at time step t, which is r(t). If the estimate is good,
the difference between those two should be zero. If the estimate is bad, the difference
can be either positive or negative and the estimate should be improved. Thus, this
difference (PE = r(t) − P(t − 1) + P(t)) yields an error in the reward prediction. Com-
monly, PE(t) is therefore referred to as prediction error and is used to update the
weight vector to improve future reward predictions. The weight vector is changed
by: �w = ˛PE(t)e(t), where 0 < ˛ ≤ 1 is a learning-rate and e(t) is a so-called eligi-
bility trace. The eligibility trace contains past stimulus representations that are used
for temporal-credit assignment (‘what stimulus in the past might have caused the
current reward?’). It can be determined recursively, such that e(t + 1) = �e(t) + s(t).
The parameter 0 ≤ � ≤ 1 determines whether only rather recent (low �) or also more
remote (high �) events are considered responsible for current rewards.

The actor component also uses the prediction error to learn which actions lead
to rewards. Each action a is associated with a scalar weight wa which are updated
similar to the stimulus weight vectors: �wa(t) = ˇPE(t)ea(t). ˇ is the learning-rate
for action learning and ea(t) is the eligibility trace of each action.

A trial consisted of 15 time steps. The stimulus was presented at time step 5. At
the same time step an action was selected on the basis of the action weights. If the
correct action was selected a reward was given at time step 10. Big rewards had a
value of ‘2’, small ones had a value of ‘1’. Between trials a random inter-trial interval
of 20–60 time steps was inserted. Parameter values in the critic were chosen to
match DA cell activity in a reward-learning task [25]. Actor component parameters
were chosen to fit the time course of the behavioral data reported here. Parameters
values were ˛ = 0.005, � = 0.9, ˇ = 0.025, and state and weight vector length was
11.

Action selection was implemented with a Boltzman distribution providing a
probability to choose action a: Pa(t) = exp (�wa(t))/

∑
a′ ∈ A

exp (�wa′ (t)) with an
inverse temperature � = 1 [30,8]. The set of actions A consisted of: peck A, peck B,
or do nothing. Initially, the weights for peck A and peck B were set to zero, while
‘do nothing’ had a small positive weight (0.2). We simulated 50 experiments with

Fig. 2. Preference (mean with standard error) on reward-choice blocks within the
color-choice training-sessions. All animals choose the large-reward (solid line) reli-
ably over the small-reward (dashed line). X-axis: day of training, Y-axis: percent
choice of large-reward.

small and 50 experiments with big rewards, each consisting of 400 trials. Afterwards,
correct responses were assessed as percentages on the basis of 40 consecutive trials.
Mean values and standard errors were determined across experiments with the
same reward value.

3. Results

3.1. Behavior

Of the 12 animals in training, ten reached criterion on
the reward-discrimination (three consecutive days over 80%
choice of the big reward) and went on to be tested on the
color-discrimination. For these 10 animals, the high level of reward-
discrimination was maintained throughout all consecutive sessions
(Fig. 2). Training of the remaining two animals was discontinued
and they were omitted from analysis.

All animals learned the color-discrimination task within 10 days
of training, the criterion (75% correct, big- and small-reward tri-
als combined) was reached after a mean of 4.50 (±1.27 standard
deviation) days. The size of the reward had a decisive influence on

Fig. 3. (A) Acquisition of the color-choice task. Pigeons performance on the first 10 days of training. Percent choice (mean with standard error) of the S++ over the S− is
depicted with a solid line, choice of the S+ over the corresponding S− is depicted with a dashed line. The dashed horizontal line represents the criterion of 75% correct. X-axis:
training-sessions, corresponding to 40 trials, Y-axis: percent correct trials. (B) Modeling of the color-choice task, depicted are the results of 100 simulations. Percent choice
(mean with standard error) of the S++ over the S− is depicted with a solid line, choice of the S+ over the corresponding S− is depicted with a dashed line. X-axis: sessions,
consisting of 40 learning trials each, Y-axis: percent correct trials. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of the article.)
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Fig. 4. The model accurately reflects the influence of reward-magnitude on learning.
Predictions for the small-reward were subtracted from the predictions for the large-
reward. This difference is plotted for the behavioral data (Y-axis) and for the model
data (X-axis).

learning-rates (Fig. 3a). While acquisition of color-pairs reinforced
by a large-reward took on average 3.40 (±0.97 standard deviation)
days, acquisition of color-pairs reinforced with a small-reward took
almost twice as long with 5.9 (±2.33 standard deviation) sessions
of training. This difference is significant (p = 0.0116). In addition to
comparing the number of sessions to criterion, both learning curves
were compared directly, this difference was found to be signifi-
cant (p = 0.005). Note that this second test includes the initial and
final training-sessions, in other words those sessions in which the
animals performed at chance or at maximal performance on both
conditions.

3.2. Model

The learning curves of the model resemble the animal behavior
(Fig. 3b) with acquisition on the large-reward condition exceed-
ing that on the small-reward condition. To assess if simulated
data reflects the difference between the conditions adequately
the correlation coefficient between the difference-values for the
behavioral- and the modeling data was determined (Fig. 4). The
differences show a strong linear correlation (r = .8614; p = 0.0014)
indicating that the model accurately reflects the influence of
reward-magnitude on learning-rate.

4. Discussion

The aim of the present study was to test a prediction of
reinforcement learning models. These models imply that learning-
rates depend on the magnitude of reward delivered after correct
responses. To assess this prediction, pigeons were trained on a
color-discrimination task with different reward-magnitudes. In line
with reinforcement learning models, a large-reward led to fast
acquisition of the task, whereas a small-reward led to slow acquisi-
tion of the task. As an additional measure, the difference between
the acquisition of large- and acquisition of small-rewards was
calculated and compared between animal behavior and an imple-
mentation of reinforcement learning. Behavior and model were
linearly related with respect to this measure. These results imply
that TD-models of reinforcement learning accurately predict ani-
mal behavior with respect to the influence of reward-magnitude
on learning-rates.

We believe that a neural implementation of TD-learning offers
a compelling explanation for the observed difference in acquisi-
tion. However, motivational influences offer a potential alternative

explanation. Various studies have shown that during learning,
response-rate or running-speed of animals are modulated by the
size of forthcoming rewards [23,19,13,4,7,20]. These results were
often interpreted in the light of incentive salience or motivation
[2,19]. While we cannot exclude such a motivational interpretation,
we believe that TD-learning offers a more parsimonious account
for our data. First, the TD-model accurately reflects animal behav-
ior with respect to the difference between large and small-rewards.
Importantly, it does so as an intrinsic property of TD-models, with-
out the inclusion of a separate ‘motivational module’. Second,
if motivation differed greatly between the large-reward and the
small-reward color-pairs the animals’ performance would reflect
this difference also after learning. However, performance reached
asymptote on the same level for large- and small-rewards, sug-
gesting that there was no overall effect of motivation on animal
performance. Third, we believe that the paradigm used in the
present study, forced choice, is far less susceptible to motiva-
tional effects than classical paradigms employing response-rate or
running-speed in a maze, since these remain sensitive to reward-
magnitude after learning. This was already concluded by Crespi
who argued that measures of response-strength quantify perfor-
mance and therefore motivation while error-measures can be used
to quantify learning [5,6].

Another line of research on reinforcement magnitude led to the
observation that such effects are strongly modulated by subjec-
tive experience. Changing the amount of reinforcer received by a
single subject for responding, say from a large to a small-reward
will result in a large deterioration of performance. If, on the other
hand, different subjects are reinforced with different amounts of
reinforcer the effect will be a lot less pronounced [3,5,6]. In line
with these results, it has been shown that the responses of sin-
gle neurons involved in reward-processing, are not merely tuned
to absolute, physical properties of reinforcement. These neurons
rather respond to subjective value of reward, scaled to other avail-
able rewards [39]. Consequently, we chose to use a within-subject
design to induce a subjective difference in the perception of rein-
forcement as is implied in the TD-model.

The neural basis of reward-based learning has been an active
area of research for several decades. To date there is consensus that
the basal ganglia along with midbrain dopaminergic neurons and
their thalamo-cortical target areas lie at the heart of reward pro-
cessing and of reward-based learning [32,34,41,10,11]. Schultz et al.
reported in 1997 [31] that single dopaminergic neurons in the mid-
brain of primates are activated in accordance with a TD prediction
error. These results have later been replicated in various studies [35]
and it is now widely accepted that dopaminergic neurons carry a
prediction error signal [for a different perspective: 2]. This signal
finds one of its uses in the striatum to aid learning related processes.
Release of dopamine in the striatum can be observed after the pre-
sentation of a contingent CS, but not after a non-contingent CS [16];
learning-rate can be increased by microstimulation in the dorsal
striatum during the reinforcement-period of a visuo-motor associ-
ation task [42]; during learning, the activation of striatal neurons
precedes that of prefrontal neurons [27]; and dopamine mediates
plasticity in cortico-striatal circuits [28,41].

Tobler et al. [39] showed that the responses of dopaminergic
neurons are sensitive to the magnitude of forthcoming rewards.
Thus, at the neural level of dopamine neurons reward-magnitude
is encoded, as required for a neural implementation of reinforce-
ment learning. However, it is unknown how this information about
reward-magnitude is read-out at target structures, such as the
striatum. To effectively modulate learning-rate, striatal dopamine
receptors should show concentration-specific effects which allow
the manifestation of different learning-rates in the striatum or
downstream targets. Further studies of different dopamine receptor
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subtypes might provide interesting insights on their involvement
in reward-magnitude modulated task acquisition.

We believe that the paradigm presented here is a useful tool
to further investigate this issue. In this paradigm, discrimination
of rewards and the influence of reward-magnitude on learning
can be assessed by distinct behavioral measures, the choice of
large- over small-reward on one hand and the acquisition of the
color-discrimination on the other hand. This distinction offers the
possibility to pit the discrimination of different reward-magnitudes
against the influence of reward-magnitude on learning-rate. Hence,
it is a tool to investigate the neural structures and pharmacological
substrates of a reward modulation of learning.

In the future we hope to elucidate how, in this learning regime,
the contrast between different reward-magnitudes is generated;
is learning to predict large-rewards fostered, learning to predict
small-rewards hindered or do both mechanisms interact; what is
the role of different dopamine-receptors and of striatal regions
in discriminating reward-magnitudes and learning from different
rewards.
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