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a b s t r a c t

Performance on psychophysical tasks is influenced by a variety of non-sensory factors, most notably the
magnitude or probability of reinforcement following correct responses. When reinforcement probability
is unequal for hits and correct rejections, signal detection theory specifies an optimal decision criterion
which maximizes the number of reinforcers. We subjected pigeons to a task in which six different stimuli
(shades of gray) had to be assigned to one of two categories. Animals were confronted with asymmetric
reinforcement schedules in which correct responses to five of the stimuli were reinforced with a proba-
bility of 0.5, while correct responses to the remaining stimulus were extinguished. The subjects’ resultant
ecision making
ayoff matrix
igeon

choice probabilities clearly deviated from those predicted by a maximization account. More specifically,
the magnitude of the choice bias increased with the distance of the to-be-extinguished stimulus to the
category boundary, a pattern opposite to that posited by maximization. The present and a previous set of
results in which animals performed optimally can be explained by a simple choice mechanism in which
a variable decision criterion is constantly updated according to a leaky integration of incomes attained

ns.
from both response optio

. Introduction

A vast body of data supports the notion that animals, includ-
ng humans, perform statistically optimally in a wide range of
asks, supporting the claim that evolution has shaped the ner-
ous system of organisms in a way that yields maximally adaptive
ehavior (Pyke et al., 1977). Examples of optimal behavior include
ultisensory integration (Ernst and Banks, 2002), risk assess-
ent (Balci et al., 2009), reward harvesting (Corrado et al., 2005;
avalpakkam et al., 2010), perceptual classification (Summerfield
t al., 2011), visual search (Najemnik and Geisler, 2005), sensorimo-
or learning (Körding and Wolpert, 2004), and movement planning
Trommershäuser et al., 2005). Optimality is frequently assessed by
omparing behavioral output to benchmarks computed via meth-
ds derived from statistical decision theory. Such methods have
lso been used to assess the reliability of sensory neural signals
Newsome et al., 1989; Stüttgen and Schwarz, 2008; Stüttgen

t al., 2011a), and have even been invoked as accounts of neural
rocessing (Deneve et al., 1999; Gold and Shadlen, 2002; Jazayeri
nd Movshon, 2006).

∗ Corresponding author. Tel.: +49 234 32 24 323; fax: +49 234 32 14 377.
E-mail address: maik.stuettgen@rub.de (M.C. Stüttgen).

376-6357/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.beproc.2013.02.014
© 2013 Elsevier B.V. All rights reserved.

Perhaps the most widely disseminated offspring of statistical
decision theory is signal detection theory (SDT; Green and Swets,
1988). SDT provides a conceptual framework for psychophysics in
which the sensory and decision processes are separable. SDT posits
that repeated presentations of the same physical stimulus give
rise to a variable internal representation on a decision axis, which
for illustration purposes can be thought of as “perceived stimulus
intensity” (but note that the nature of the decision variable is more
appropriately characterized as “strength of evidence”; Pastore et al.,
2003). The stimulus representation is assumed to vary randomly
from one presentation to the next; usually, it is assumed that the
random variations conform to a normal distribution with fixed vari-
ance. If an observer is asked to categorize either of two different
stimuli varying along some physical dimension, SDT assumes that
the subject does so by comparing the perceived stimulus intensity
on each trial (�t) to a criterion value c, with the decision rule:

- if �t ≥ c, respond “high-intensity stimulus present”,
- if �t < c, respond “low-intensity stimulus present”.
This decision rule can be generalized to more than two stimuli
and to other kinds of tasks (MacMillan and Creelman, 2005). For our
present purposes, we will discuss the case of a single-interval forced
choice (categorization) task with six stimuli differing in luminance.

dx.doi.org/10.1016/j.beproc.2013.02.014
http://www.sciencedirect.com/science/journal/03766357
http://www.elsevier.com/locate/behavproc
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category S1 in condition E1 than in E3, one would expect that S1
responses should decrease more in condition E1 than in condi-
tion E3. Similar considerations for the other conditions would lead
0 M.C. Stüttgen et al. / Behavi

ig. 1A shows six normal distributions (gray), each separated by
standard deviation from its immediate neighbors, which corre-

pond to the hypothesized internal representations of the stimuli.
ssume that the three leftmost ones are arbitrarily assigned to cat-
gory S1, and the three rightmost ones are assigned to category S2.
n observer is confronted with the task to respond with “S1” or
S2” on a given trial t on the basis of a single stimulus value, �t.

.1. Optimization account of perceptual categorization

Statistical decision theory prescribes an optimal decision rule in
hich sensory evidence, a priori probability of signal occurrence,

nd values and costs of correct and incorrect responses are inte-
rated. Here, we will assume that all stimuli are equiprobable and
gnore costs of incorrect responses. Instead, we will focus on the
ffects of different values, implemented by assigning different rein-
orcement probabilities for correct responses following different
timuli.

Fig. 1A illustrates the simplest case in which correct responses
ollowing each stimulus are reinforced with the same probability
0.5; “symmetrical reinforcement”). The bold black line repre-
ents the “objective reward function” (ORF; Maddox, 2002), i.e. the
xpected number of reinforcers per trial as a function of criterion
lacement. The position on the x-axis for which the ORF has its
aximum value corresponds to the location of the optimal cri-

erion and is indicated by the black vertical line. In the present
xample where all neighboring stimuli are equidistant, the optimal
riterion is located right in the middle between the means of the
hird and the fourth stimulus distributions. The optimal strategy
ictated by statistical decision theory is to respond “S1” whenever
t is smaller and to respond “S2” whenever �t is larger than this
riterion (the computations giving rise to the criterion placements
n Figs. 1 and 2 are explained below and are also contained in a

atlab script provided as supplementary material).
In Fig. 1B, the six gray sigmoidal lines show the probability of

einforcement for each stimulus separately as a function of crite-
ion placement for the same situation as in Fig. 1A. The probability
f reinforcement increases with the criterion for S1 trials (three
arkest curves, left) and decreases for S2 trials (three brightest
urves, right), because a higher criterion value will lead to more
S1” responses and fewer “S2” responses. Reinforcement probabil-
ty saturates at 0.5, because in our experiment correct responses
nly yield reinforcement with that probability. Since all six stimuli
ave the same probability (1/6) of being presented to the subject,
he overall probability of obtaining reinforcement in a random trial
bold black line) is the average of the reinforcement probabilities
or each stimulus; this is just another way to define the ORF.

Formally, let us denote the means of the six stimulus distribu-
ions with �1 to �6. The probability of responding with “S1” is
hen ˚(−�i + c) for the ith stimulus, where ˚ is the standard nor-

al cumulative distribution function. Let reinforcement RfS1 = 1 if
n S1-category stimulus was presented and the subject’s response
as “S1” and led to reinforcement; let RfS1 = 0 otherwise. Corre-

pondingly, let RfS2 = 1 if an S2-category stimulus was presented
nd the subject’s response was “S2” and led to reinforcement; let
fS2 = 0 otherwise. Then the probabilities for reinforcement on S1-
nd S2-trials (E(RfS1) and E(RfS2), respectively) are

(RfS1) =
∑

i=1,2,3

1
6

× ˚(−�i + c) × 0.5

nd
∑

(RfS2) =
i=4,5,6

1
6

× (1 − ˚(−�i + c)) × 0.5

The probability of obtaining a reinforcer in any given trial
s the sum of the two: E(Rf) = E(RfS1) + E(RfS2). E(Rf) (or, more
Processes 96 (2013) 59–70

precisely, E(Rf|c)) is the objective reward function. In the fol-
lowing section, we will describe an experimental manipulation
of reinforcement probability which yields counterintuitive pre-
dictions under a reinforcement-maximization account. Then, we
will describe the predictions of a non-optimization account which
builds on insights from animal learning theory.

1.2. Experimental manipulation: extinguishing responding to a
single stimulus

What happens in the above scheme when the reinforcement
probability for a single stimulus is reduced to 0? In our exper-
iment, all six stimuli are still shown with the same probability,
and correct responses are reinforced with probability 0.5 for all
but one stimulus. Fig. 1C–H illustrates the consequences of extin-
guishing responding to each of the six stimuli at a time (these
conditions are henceforth termed E1 to E6). It can be seen that
the ORFs become asymmetrical, and that the peaks of these func-
tions (i.e., the positions of the optimal decision criteria) move away
from the neutral criterion (the latter is depicted as a dashed verti-
cal line in all panels for comparison purposes). Obviously, the effect
of extinguishing responses to a single stimulus on the position of
the optimal criterion depends on the condition: Intriguingly, the
criterion is almost unaffected in conditions E1 and E6 (compare
Fig. 1C and H to Fig. 1B). Intuitively, since stimulus 1 is furthest
away from the neutral criterion, its contribution to the ORF around
the optimum is very small and nearly flat (Fig. 1A and B), and there-
fore extinguishing it does not change the position of the optimum
much, it merely shifts its peak downwards (Fig. 1C). The distribu-
tion of stimulus 3, on the other hand, is very close to the neutral
criterion at zero, and its contribution to the ORF changes a lot
around the peak (Fig. 1A and B); hence, extinguishing it will lead
to a larger shift of the ORF’s peak (Fig. 1E). Qualitatively, if sub-
jects have an algorithm for setting the criterion such that it moves
towards the optimal criterion, we would expect that the criteria for
the six conditions (c(E1) to c(E6)) are ordered in the following way:
c(E3) < c(E2) < c(E1) < c(E6) < c(E5) < c(E4) (as shown in Fig. 1C–H).
Because the S1/S2 response ratio increases with increasing crite-
rion position, we expect the same order for the S1/S2 response ratio.
Assuming six distributions with equal distances between neigh-
boring stimuli, quantitative predictions for the optimal criterion
position can be computed numerically, and the results of these
computations are shown in Fig. 1 (also see supplementary Matlab
code).1

However, these predictions should be highly counterintuitive
for anyone familiar with animal learning theory. After all, an
observer performing the task with sensitivity as depicted in Fig. 1A
earns a substantial fraction (close to 40%) of overall reinforcement
in trials in which stimuli 1 and 6 are presented, as these are easiest
to classify. In consequence, extinction of responding to stimuli 1
and 6 entails a larger loss of reinforcers than extinction to stimuli 3
and 4. A vast body of literature shows that animals are highly sen-
sitive to changes in the frequency of positive reinforcement and
that magnitude or probability of positive reinforcement is mono-
tonically related to choice probability (Herrnstein, 1961; Reynolds,
1961; Nevin et al., 1975; McCarthy and Davison, 1981; Corrado
et al., 2005; Balci et al., 2009; Teichert and Ferrara, 2010; Stüttgen
et al., 2011b). Accordingly, since subjects lose more reinforcers from
1 The ordinal prediction breaks down if the distance between the stimuli, i.e. the
overlap between the neighboring distributions, becomes very small (ca. d′ < 0.3). We
have set up the experiment such that the ordinal prediction holds.
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Fig. 1. Outline of signal detection theoretical model and predictions for criterion placement. (A) Panel shows six stimulus distributions (gray) on an arbitrary decision axis,
corresponding to the internal representations of six stimuli. The distance between adjacent distributions is always 1 standard deviation (i.e. d′ = 1). The three left distributions
are to be categorized as “S1”; the three right distributions are to be categorized as “S2”. The solid vertical line signifies the position of the optimal (i.e. reinforcement-
maximizing) criterion. The bold black line represents the objective reward function, i.e. the expected average number of reinforcers per trial as a function of criterion
position, and peaks at the position of the optimal criterion. (B) As in (A), but gray lines represent the expected average number of reinforcers per trial for each stimulus
separately. The six boxes on the right illustrate the to-be-categorized stimuli. (C)–(H) As in (B), but each panel is valid for one experimental condition E1. . .E6, each of which
is illustrated in right column. The stimulus whose reinforcement probability was set to 0 is highlighted. The dotted vertical lines visible in panels (C)–(H) indicate the position
of the neutral (i.e. accuracy-maximizing) criterion and are shown for comparison purposes only. See Sections 1.1 and 1.2 for more details.
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Fig. 2. Outline of an income-based model and its predictions for criterion placement.
In each panel, the bold black line gives the difference between the expected number
of reinforcers per trial obtained by correct S1 and S2 responses, E(RfS1)–E(RfS2). The
gray lines represent this difference for each stimulus separately. The dashed tilted
line represents ((1 − �)/ı)×c as explained in Section 1.3, and is the same for all panels.
The solid vertical line indicates the predicted position of the decision criterion given
the particular combination of d′ , � and ı. Panel (A) gives predictions for baseline
conditions when reinforcement probability for correct responses is 0.5 for all stimuli.
Panels (B)–(G) give predictions for the six experimental conditions E1. . .E6. In all
panels, the dotted vertical lines indicate the position of a neutral decision criterion.
Processes 96 (2013) 59–70

one to expect that c(E1) < c(E2) < c(E3) < c(E4) < c(E5) < c(E6) for the
criteria and S1/S2 response ratios. Next, we will present a non-
optimizing model that makes predictions that are more in line with
intuitions from animal learning theory.

1.3. A non-optimization account of criterion setting

There are various non-optimizing algorithms one can imag-
ine that would implement the intuition that c(E1) < c(E2) < c(E3)
< c(E4) < c(E5) < c(E6), for example any algorithm that leads to
matching, such as melioration (Herrnstein and Vaughan, 1980).
However, there is the added complication in our experiment that
we have to deal with perceptual uncertainty. While there are
accounts that link signal detection theory with generalized match-
ing (Davison and Tustin, 1978; Davison and Nevin, 1999), these only
deal with steady-state behavior, thus ignoring the mechanisms
underlying adaptation (Stüttgen et al., 2011b). Several authors have
suggested algorithms for perceptual choice tasks operating on a
trial-by-trial level; the algorithms suggested by Boneau and Cole
(1967) and by us (Stüttgen et al., 2011b) lead to optimization; the
algorithms by Dorfman and Biderman (1971) and Treisman and
Williams (1984) do not. The model we describe next is a blend
between criterion setting theory (Treisman and Williams, 1984)
and model 3 of Dorfman and Biderman (1971).

The model operates within the SDT framework, thus (for the case
at hand) postulating six stimulus distributions and a single crite-
rion. The central idea of the model is that the criterion is updated
after each trial in which reinforcement occurred. More specifically,
the criterion shifts to the right after reinforcement of an S1 response
and shifts to the left after reinforcement of an S2 response; thus,
whenever the animal is reinforced the criterion is shifted so that
the response that was reinforced becomes more likely. Put differ-
ently, the criterion integrates the difference between the number
of reinforcers obtained from S1 and S2 responses. However, in this
form the model will always lead to exclusive choice of one response
option, since each criterion shift will make a subsequent crite-
rion shift in the same direction more likely and a criterion shift
in the opposite direction less likely. For this reason, Dorfman and
Biderman (1971) rejected this model and preferred models that
also (or exclusively; Kac, 1969) learn from error trials. However,
the model can be fixed by assuming that the integration of rein-
forcements is “leaky”, and that recent reinforcers play a bigger
role than distant reinforcers in criterion setting (a similar assump-
tion is made by criterion setting theory; Treisman and Williams,
1984).

Formally, as before, let RfS1(t) = 1 (RfS2(t) = 1) if the animal
responds “S1” (“S2”) on an S1 (S2) trial t and is reinforced; other-
wise RfS1(t) = 0 (RfS2(t) = 0). Note that only one of the two variables
can be 1 on the same trial, but both can be zero. If the criterion on
trial t is c(t) then:

c(t + 1) = � × c(t) + ı × [RfS1(t) − RfS2(t)]

where ı is the positive step-size for the criterion shift and � is a
forgetting term (or leak factor) that can range from 0 to 1. The cri-
terion is just a scaled version of a leaky integration of the difference
of the incomes on both sides (see Section 2.5 for proof).

What is the criterion that this simple criterion learning algo-
rithm will converge to? Since the responses are stochastic, there
will be an equilibrium distribution for the criterion, but deriving

this equilibrium distribution (and showing that it actually exists)
is beyond the scope of this paper (but see Norman (1972) for an
analysis of the Kac–Dorfman–Biderman model). Heuristically, the
criterion does not change on average if the expected step away
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rom the neutral criterion at zero is as big as the pull back to zero,
hat is

�c − c] + ı × [E(RfS1) − E(RfS2)] = 0

Hence, there is a linear relationship between the criterion and
he difference of the probabilities for a reinforcement for category
and category 2:

(RfS1) − E(RfS2) = [1 − �]
ı

× c

In Fig. 2, the difference between E(RfS1) and E(RfS2) as a func-
ion of the criterion is plotted as a black bold line. We have also
lotted these differences for each stimulus separately as gray lines.
he criterion that the algorithm should converge to lies on a
traight line through zero (dashed black lines in Fig. 2); the slope of
hat line depends on the step size ı and the leakage term � (the
lope of the line in Fig. 2 was chosen arbitrarily). The criterion
hat we expect the animal to converge to lies at the intersec-
ion of the two black curves and is marked with a vertical line.
ig. 2B–G shows how the criterion changes when we extinguish
he different stimuli. The predicted criterion-order now becomes
(E1) < c(E2) < c(E3) < c(E4) < c(E5) < c(E6). Note that this ordinal pre-
iction does not depend on the precise slope. This prediction is
onsistent with the intuition that the more income the animal loses
rom the first category, the more the animal should respond to the
econd category.

The design of the experiment that will be reported below does
ot depend on this specific model. There are other models that
ake the same order predictions (e.g. based on matching), but we

pted for the outlined model because of its conceptual simplic-
ty and because it directly relates to previous attempts to model
sychophysical performance using an SDT framework.

. Methods

.1. Subjects

Subjects were four pigeons (Columba livia) obtained from local
reeders. The subjects served on previous experiments employ-

ng choice tasks. Animals were housed individually in wire mesh
ages inside a colony room with a 12-h light–dark cycle (lights on
t 8 a.m.). Water was available ad libitum throughout the experi-
ent. On weekends, food was freely available; on weekdays, food
as provided only during testing in the experimental chamber. Ani-
als were food-deprived to 85-90% of their free-feeding weight.

upplemental food to prevent further weight loss was given when-
ver necessary. All subjects were kept and treated according to the
erman guidelines for the care and use of animals in neuroscience,
nd all procedures were approved by an ethics committee of the
tate of North Rhine-Westphalia, Germany.

.2. Apparatus

Experiments were conducted in an operant chamber (measuring
oughly 35 cm along all three dimensions) with three translucent
esponse keys arranged side by side. The response keys measured
cm × 4 cm and were located 20 cm above the floor. Each effective
ey peck produced a feedback click. The required force for activa-
ion was ∼25 g. A food hopper was located below the center key.
timuli were shown on a flat screen monitor (Philips 150P2, 15′′,
ative resolution 1024 × 768) mounted on the back of the experi-
ental chamber. Stimuli were shades of gray with grayscale values
f 140, 160, 170, 190, 200, and 220. In the following, stimuli with
rayscale values of 140, 160 and 170 will be referred to as S1 or
dark”, and stimuli with grayscale values of 190, 200, and 220
ill be referred to as S2 or “light”. Thus, the category boundary
Processes 96 (2013) 59–70 63

between S1 and S2 was arbitrarily placed at grayscale value 180.
The gray values were chosen from previous experience such that
the most extreme values were categorized correctly in about 95%
of trials in the symmetrical reinforcement condition. The cham-
ber was positioned in a sound-attenuating shell, and white noise
was provided at all times to mask extraneous sounds. Experi-
mental hardware was controlled by custom-written Matlab (The
Mathworks, Natick, MA) code (Biopsychology Toolbox, Rose et al.,
2008).

2.3. Procedure

Testing was conducted every weekday. Each session lasted
about 50 min and comprised 300 trials. The general paradigm is
illustrated in Fig. 3. At the beginning of each trial, the center key
was illuminated green. The animal could initialize the trial by res-
ponding with a single peck to the center key within 5 s. If the subject
failed to respond, an initialization omission was counted, the trial
was aborted, and the animal reentered the intertrial interval (4 s).
Omitted trials were not repeated. On average, the animals com-
pleted more than 94% of trials in each session (all medians ≥98%).
After initialization, one of the six stimuli (pseudorandom sequence)
was presented on the center key for 1 s (sample phase). Subse-
quently, the center key turned green again (confirmation phase).
A single key peck switched off the green center key and turned
on the two side (choice) keys, which were illuminated orange,
until the animal responded by pecking at one of them once (choice
phase). If the animals failed to respond during the confirmation or
the choice phase, the trial was aborted within 5 s, and the animals
reentered the intertrial interval. However, trials were almost never
aborted during these phases. The confirmation phase was included
to ensure that the animals kept attending to the sample stimuli for
the full 1 s presentation time.

Responses to the right choice key were reinforced probabilis-
tically after presentation of any S1 stimulus, and responses to the
left choice key were reinforced probabilistically after presentation
of any S2 stimulus. Reinforcement consisted of 2 s access to grain
provided by a food hopper located below the center key. Probability
of reinforcement was 0 for incorrect responses and 0.5 for correct
responses in baseline control conditions (10 sessions before and 10
sessions after the six experimental conditions). In the experimental
conditions, probability of reinforcement for correct responding was
reduced to 0 for one of the six sample stimuli and remained at 0.5 for
all other stimuli. Throughout the entire experiment, every correct
response was followed by illumination of the food hopper, regard-
less of whether food was provided or not. Every incorrect response
was followed by a 2 s time-out during which the keys were inop-
erative and all houselights were turned off. The six experimental
conditions (henceforth referred to as E1–E6) were maintained for
15 sessions each (up to 4500 trials per condition). A previous study
(Stüttgen et al., 2011b) showed that the animals’ behavior in this
paradigm reliably stabilized after about 10 sessions or 3000 trials.
The order in which stimuli were assigned a reinforcement proba-
bility of 0 was counterbalanced across animals (the order of testing
is shown in Fig. 4 for each animal).

2.4. One-criterion-per-session model

A model based on SDT was fitted to the data. We will use this
model as a standard to compare it to the criterion learning model
described in the introduction. The one-criterion-per-session com-

parison model assumes the existence of six normal equal-variance
distributions on a decision axis and a criterion which could vary
across but is fixed within experimental sessions. In this way, we
can observe criterion shifts over sessions even if we assume the



64 M.C. Stüttgen et al. / Behavioural Processes 96 (2013) 59–70

time

initialization (<5 s)

sample (1 s)

confirmation

choice (<5 s)

outcome (2 s)

Fig. 3. Schematic outline of the categorization task. Rectangles represent three response keys. Sequence of events runs from top left to bottom right. After elapsing of the
intertrial interval (ITI) of 4 s, the center key is illuminated green (initialization phase). After a single response, the center key displays one of six possible stimuli (shades
of gray) for 1 s (sample phase), after which the key turns green again (confirmation phase). Following another response, the center key is turned off, and the side keys are
illuminated orange (choice phase). The subject is required to indicate its decision by responding once to either choice key. If the response is correct, a food hopper is activated
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or 2 s according to a probabilistic schedule. If incorrect, all lights are switched off f

riterion does not change within a session. Model parameters were
tted using maximum likelihood.2 For each bird, fitted parameters

ncluded the means of the six distributions (�1, �2,. . ., �6) and one
riterion value (c) for each session, yielding k = 116 free parameters,
s each bird was tested for 110 sessions. The binomial probability
f responding with category 1 in a trial that presented stimulus i in
ession j was ˚(−�i + cj), where ˚ denotes the cumulative standard
ormal distribution function. This model is an instance of a gen-
ralized linear model, and the convex optimization problem can
asily be fitted by a standard Newton method (Dorfman, 1973).
rials in which the subject did not respond were simply ignored
5% for bird #720, 2% for #919, 1% for #920, 5% for #935). Good-
ess of fit was assessed by deviance (Collett, 1991). For binomial
odels, deviance can be thought of as the appropriate analogue

f summed squared error in normal models. We compared the
btained deviance to the deviance that is expected from a para-
etric bootstrap using the maximum likelihood fit described in
ichmann and Hill (2001). If the obtained deviance is significantly

arger than the expected deviance one speaks of overdispersion in
inomial models.

To sum up, the one-criterion-per-session model describes the
ata set for each bird as arising from six normal distributions with
xed means and equal variance and one decision criterion for each
xperimental session (the same approach as in Stüttgen et al.,
011b).

.5. Income-based criterion learning model

In order to gain a deeper understanding of the algorithm
nderlying adaptive choice in this task, we went on to conceive

n income-based model that operates at the single trial level.
ncome I is simply the number of reinforcers attained from res-
onding to each choice option (S1 and S2) over trials, IS1 = �RfS1,t

2 Actually, we used penalized maximum likelihood to increase the stability of the
tting procedure. We used L2 regularization with a small regularization parameter
10−5) that does not influence the estimate in a noteworthy way.
punishment).

and IS2 = �RfS2,t for choices of S1 and S2, respectively, where
�RfSx,t denotes the sum of reinforcers from Sx responses across
trials.

As the one-criterion-per-session model, the income-based
model assumes the existence of six equal-variance normal
stimulus distributions and a decision criterion. While the com-
parison model assumes one criterion for each experimental
session, the criterion in the income-based model varies from
trial to trial within each session. On trials where the ani-
mal is reinforced, the criterion shifts in the direction that
makes the reinforced response more likely (as in the models
of Kac, 1969; Dorfman and Biderman, 1971; Dorfman et al.,
1975). Such a model always leads to exclusive choice (Dorfman
et al., 1975); hence we added a forgetting term that constantly
pulls the criterion back to a neutral criterion (Treisman and
Williams, 1984). The model is already described in the intro-
duction, but we repeat the equation here for easy reference:
c(t + 1) = � × c(t) + ı × [RfS1(t) − RfS2(t)].

The income-based learning model has k = 8 free param-
eters for each bird (6 means, the leak factor � , and the
learning rate ı). Note that the criterion is just a scaled ver-
sion of a leaky integration of the difference of the incomes
on both sides. To see this define IL1 to be a leaky integra-
tion of the reinforcers for response 1 and IL2 correspond-
ingly, IL1(t + 1) = � × IL1(t) + RfS1(t) and IL2(t + 1) = � × IL2(t) + RfS2(t).
Then, [IL1(t + 1) − IL2(t + 1)] = � × [IL1(t) − IL2(t)] + [RfS1(t) − RfS2(t)],
and therefore c(t) = � × [IL1(t) − IL2(t)].

The probability of responding with category 1
on trial t when the stimulus was i is therefore
˚{−�i + c(t)}= ˚{−�i + ı × [IL1(t) − IL2(t)]}. For the very first
trial in the first session we assume that income from both sides (or
equivalently, the criterion) was zero before. We further assumed
that the leaky incomes (or equivalently, the criterion) for the first
trial of each of the other sessions are the values of the last trial of

the previous sessions.

Trials in which the subject did not respond were ignored.
For a fixed � , we can fit this equal-variance signal-detection
model with trial-by-trial criterion adaptation by using the same
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Fig. 4. Choice patterns (proportion of S2 responses) for all birds across all sessions.
Dashed vertical lines separate reinforcement conditions. Numbers indicate which
of the six stimuli (ranked from 1 to 6 in order of increasing luminance) did not yield
reinforcement in the respective condition.
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standard methods for generalized linear models as before, the only
difference now is that we use the difference of integrated incomes
as a predictor (Dorfman and Biderman, 1971; Dorfman, 1973). In
order to optimize also over � , we performed a one-dimensional
optimization where in each substep we sought the best fit for the
current value of � .

2.6. Statistical analysis

For the ordinal analysis of the responses, we employed Spear-
man’s rank order correlation coefficient. Goodness of fit of the
models was assessed by negative log likelihood (NLL) and deviance.
Models were compared using the Bayesian Information Criterion,
BIC = [2NLL + k log(N)], where k is the number of free parameters
(116 and 8 for one-criterion-per-session and the income-based
models, respectively) and N is the number of data points (trials in
this case). The BIC allows comparing goodness of fit of models with
different numbers of free parameters; the better model is the one
featuring a smaller BIC value. All analyses were performed using
MATLAB 7.8.0 using purpose-written code.

3. Results

Fig. 4 shows the birds’ choice patterns (proportion S2 responses)
across all sessions. During baseline testing (symmetrical reinforce-
ment during the first 10 sessions), the animals did not exhibit
a marked preference for any response category. However, res-
ponding was heavily biased during asymmetric reinforcement
schedules, such that pigeons avoided responses to the key which
was associated with the non-reinforced stimulus. The magni-
tude of the response bias was dependent on which stimulus was
unreinforced: the birds exhibited more extreme choice biases in
conditions with unreinforced stimuli further away from the cat-
egory boundary (E1, E6) than in conditions with unreinforced
stimuli closer to the boundary (E3, E4). This impression was con-
firmed when constructing psychometric functions for each animal,
pooling response data from the last 5 sessions of each condition
(Fig. 5).

If the qualitative impression gained from Figs. 4 and 5 – larger
biases for more extreme stimuli – is correct, this would run contrary
to the optimization model derived from signal detection theory.
The optimality model predicts that the response bias resulting
from the extinction of responding to stimuli 1 and 6 should be
smaller than the response bias resulting from the extinction of
responding to stimuli 3 and 4 (see Section 1 and Fig. 1). More
specifically, optimization predicts that the number of S2 responses
should follow the pattern E3 > E2 > E1 > E6 > E5 > E4. Fig. 6 (left col-
umn) plots the relative frequency of S2 responses in the last five
sessions of each condition, with conditions rearranged such that
the data points should progressively decrease from left to right. It
is evident that the predictions of the optimization account were
not met; the rank-order correlation coefficients ranged from only
−0.6 to −0.71. In fact, the optimization account succeeded only
in predicting the direction of the choice bias (S2 > S1 in condi-
tions E1–E3, S2 < S1 in conditions E4–E6); however, especially
in conditions E4–E6, the predicted rank order was frequently
inverted (see birds #919 and #935 for the most extreme exam-
ples).

Does an account that is based on income predict the observed
patterns? As explained in the introduction, pairwise comparisons
of the proportions of S2 responses should follow the pattern

E1 > E2 > E3 > E4 > E5 > E6 (see Fig. 2). The data are plotted in the
right column of Fig. 6, again with the conditions arranged to reflect
the predicted pattern. Although there are some deviations from the
income-based predictions, rank-order correlation coefficients were
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Fig. 5. Psychometric functions averaged over the last five sessions within each condition, shown separately for each bird. Shading indicates experimental condition, i.e. the
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Table 1
Goodness of fit for income-based learning and one-criterion-per-session mod-
els. Numbers in cells provide negative log likelihoods (columns labeled NLL) and
Bayesian Information Criteria (columns labeled BIC) for the income-based criterion
learning and the one-criterion-per session comparison model.

Bird Criterion learning model One-criterion-per-session model

NLL BIC NLL BIC

720 14,977.3 30,037.4 14,761.5 30,713.8
919 11,517.0 23,117.0 11,442.1 24,079.3
920 14,649.1 29,381.3 14,367.7 29,930.2
timulus for which correct responses were not reinforced (see legend).

ubstantially higher than for the predictions of the optimization
ccount, ranging from −0.83 to −0.94.3

The fit of the income-based criterion learning model is shown
n Fig. 7 which plots the proportion of S2 responses aggregated
or each session, separately for each bird (black: observed data
eplotted from Fig. 4, dark gray: model fit to the data). Visually,
he fit looks reasonable. To assess whether this criterion learn-
ng model provides a statistically satisfactory fit to the data, we
ompared its negative log likelihood (NLL) to that of the one-
riterion-per-session model (i.e., one criterion for each of the 110
essions; see Sections 2.4 and 2.5). The NLLs and BICs for all ani-
als are shown in Table 1. The criterion learning model has k = 8

ree parameters (6 means, the learning rate ı, and the leak factor
) whereas the one-criterion-per-session comparison model has
= 116 (6 means and 110 criterion values). The number of trials
is roughly 30,000 for each animal. Despite the wildly different

umber of free parameters, the NLLs are comparable for the two
odels, with the comparison model performing only slightly bet-

er. However, since that model has many more free parameters,
he BIC strongly prefers the criterion learning model for all four

nimals.

Both models leave quite a bit of variability in the data unex-
lained: inspection of the fitted psychometric functions for the

3 We opted for a test of the rank-order predictions of optimizing and the income-
ased models because this requires the fewest assumptions. For example, the

ncome-based model predicts the rank order E1 > E2 > E3 > E4 > E5 > E6 regardless of
he specific values of � and ı. Similarly, the quantitative prediction of SDT could be

oderated by a ‘conservatism’ bias, in which subjects adjust their response crite-
ion only by a constant fraction of that required for optimal performance (Green and
wets, 1988). Still, the degree of conservativeness has no effect on the rank order of
he predicted criterion sequence.
935 14,168.8 28,420.3 14,036.9 29,263.9

one-criterion-per-session model revealed that the deviance of the
data points (which is comparable to variance in normal models)
was about two to three times as high as expected from a bino-
mial process (average of 2.6 for the four birds), a common finding
with binomial models known as overdispersion (Collett, 1991).
Obviously, this could be due to a non-stationary decision criterion,
as has been noted by other authors (Treisman and Williams, 1984).
Accordingly, we would expect less overdispersion with the crite-
rion learning model. Unfortunately, deviance cannot be calculated
for this model since we are dealing with Bernoulli trials and not
binomial data. But as the criterion learning model has a larger neg-
ative log likelihood than the comparison model, we can conclude
that there are still unidentified causes of response variability. Also,
if we simulate responses from the fitted criterion learning model
and then fit the one-criterion-per-session model to the simulated

data we do not observe overdispersion as big as in the original
data.

The criterion learning model uses a leaky integration of the
incomes as a predictor for the responses. As the leaky integration
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Fig. 6. Comparison of predicted and obtained response criterion order. Each row
depicts the relative frequency of S2 responses during the last five sessions of each
condition for an individual animal. Panels in the left column assess the rank-order
fit of the optimization model, with the order of conditions arranged such that the
data points should progressively decrease from left to right. Similarly, panels in the
right column assess the rank-order fit of the criterion learning model, and again
the conditions are arranged such that a perfect fit would require data points with
monotonically decreasing value.
Each data point is based on roughly 1400-1500 trials. Vertical lines indicate exact
binomial 95% confidence intervals. Goodness of fit was assessed as the degree to
w
r

o
o
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e
c

hich the fitted response criteria showed the same rank order as predicted by the
espective model and quantified using Spearman’s rho, provided for each panel.

f the incomes is necessarily correlated with the local averages
f the responses, it is perhaps not surprising that this model can,
t least qualitatively, fit the average steady-state behavior, even
hough statistically not all of the variability could be accounted
or. Hence, a good visual fit of average steady-state behavior does
ot necessarily mean that the fitted model would also reach the
ame steady-state behavior if the data were generated from the
odel (see discussion in Corrado et al., 2005). Therefore, as a san-
ty check, we simulated the model forward on the same sequence
f stimuli that the subjects received but with the responses gen-
rated by the model. The result of one exemplary simulation run
an also be seen in Fig. 7 (light gray). The steady-state behavior
Processes 96 (2013) 59–70 67

that the model generates is consistent with observed behavior.
This is not trivial as a model that only learns on error trials (Kac,
1969) will also fit the steady-state behavior visually well but
will generate inconsistent behavior (data fit and simulations not
shown).

As described above, the four birds previously participated in
a similar experiment in which they were found to perform sta-
tistically optimal (Stüttgen et al., 2011b). Could optimality in the
previous experiment have arisen as a by-product of the same
income-based choice mechanism? We applied the fitted criterion
learning model to that data set and kept the current estimates
of the learning rate ı and the leak factor � . The means of
the six stimulus distributions �1–�6 had to be estimated again
because we employed a different stimulus set in the previous
study. The result of this exercise can be seen in Fig. 8. The
model captured the data rather well, with the exception of the
‘overshoots’ induced by contingency changes (see Stüttgen et al.,
2011b for discussion). However, steady-state (quasi-optimal) per-
formance was well approximated, supporting the present model as
a viable account of choice behavior in our perceptual categorization
task.

4. Discussion

Usually, signal detection experiments employ only two stimuli
at a time. Employing six stimuli as in the present study opens
up the possibility to manipulate the reinforcement probabilities
for single stimuli in more complex ways. Capitalizing on this fea-
ture, we found that birds perform suboptimally when responses
to single stimuli are extinguished. Moreover, the degree of sub-
optimality increased with the distance of the to-be-extinguished
stimulus from the category boundary. This finding is seemingly at
odds with data showing that animals perform near-optimally when
payoff matrices are manipulated, including our own (Feng et al.,
2009; Stüttgen et al., 2011b; but see Teichert and Ferrara, 2010).
Importantly, the four pigeons which served as subjects for the
present study also participated in an earlier experiment which was
almost identical to the present with the important difference that
reinforcement probabilities were identical for all stimuli within a
category, ranging from 0.2 to 0.6 (Stüttgen et al., 2011b). In that
study, the birds (after a few sessions) exhibited choice probabili-
ties which maximized the number of earned reinforcers. Thus, we
are left with an apparent discrepancy: in the previous experiment,
animals performed optimally, in the present experiment, they did
not. However, a simple process model based on earlier trial-by-trial
accounts of signal detection performance (Dorfman and Biderman,
1971; Treisman and Williams, 1984) was able to reconcile the two
disparate sets of data.

4.1. Learning from errors vs. learning from reinforcement

Our model builds exclusively on incomes. Dorfman et al. (1975)
have argued that such models always lead to exclusive choice:
since each reinforced response renders that response more likely
to occur, a positive feedback loop will push the criterion towards
±infinity, leading to consistent choice of only one response option.
Therefore, these authors proposed that a model should incorporate
criterion shifts for errors as well to prevent the criterion from drift-
ing off (Dorfman and Biderman, 1971; Dorfman et al., 1975). We
opted for a different solution, the constant drift of the criterion back
to a neutral value (mathematically equivalent to a leaky integration

of past incomes, see Section 2.4), as in Treisman’s criterion setting
theory (Treisman and Williams, 1984). One effect of leaky integra-
tion is that the effect of past outcomes on future choices diminishes
over time, and past outcomes are forgotten at a rate that is specified
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ig. 7. Fit of the income-based learning model. Each panel shows the original respo
nd forward-simulated data (light gray). See text for details.

y the leakage factor � (see Section 2.5). Another effect of leaky inte-
ration is that, because of the constant drift back towards a neutral
riterion, the criterion does not drift off towards ±infinity. The rea-
on we chose leaky integration over error correction as proposed
y Dorfman and Biderman (1971) is that, in order to fit their data,
hey had to assume learning rates for errors that were several times
arger than those for reinforcement. While we did not assess the
elative importance of errors over reinforcement, nonsystematic
nvestigations in our laboratory have yielded no convincing evi-
ence that errors in this task contribute substantially to criterion
etting. Also, errors were quite rare compared to reinforcements
percentage of correct responses generally exceeded 80%), so there
ould be less opportunity to learn from errors in this task than

rom reinforcement. In addition, when we fitted a model that only
earns from errors it could not generate the data qualitatively when
imulated forward. Nonetheless, we acknowledge that our choice
f leaky integration over adding in an error correction component
s somewhat arbitrary.

.2. The effects of conditioned reinforcement

Our procedure involved a feedback signal for correct responses
ther than food delivery, namely the activation of the feeder
ight. It could be argued that the feeder light serves as condi-
ioned reinforcer. We did not test whether the feeder light actually
erves that role, but assuming it does would not affect our results,
ecause the feeder light was equally present in all experimental

onditions. Assuming conditioned and unconditioned reinforcers
perate the same in choice, one can think of conditioned rein-
orcement as elevating the actual reinforcement magnitudes, for
xample from 0.5 reinforcers per trial to 0.6 reinforcers per trial.
fractions of one bird (black, same as in Fig. 4) along with the fitted data (dark gray)

Consequently, food omission in the experimental conditions would
not reduce reinforcement magnitude to 0 but to 0.1. This would
have a small quantitative but not a qualitative effect on our
data – predicted decision criteria would only be somewhat less
extreme.

4.3. Optimizing vs. non-optimizing choice algorithms

Animal subjects have been found to perform optimally in a
wide range of behavioral tasks (Green et al., 1983; Hinson and
Staddon, 1983; Sugrue et al., 2004; Corrado et al., 2005; Balci et al.,
2009; Feng et al., 2009; Stüttgen et al., 2011b). While steady-state
behavior is often described as being nearly optimal, the precise
algorithm by which optimality is achieved is usually not specified,
and the dearth of adequate process models is often noted (Boneau
and Cole, 1967; Stüttgen et al., 2011a,b; Jones and Love, 2011). It
is open whether optimization is explicitly factored in the choice
algorithm, or whether it results as a by-product of another choice
strategy such as equating returns at a short time scale (such as
melioration; Herrnstein and Vaughan, 1980; Baum, 1981; Staddon
and Hinson, 1983), or some sort of income-based algorithm as
we used here (Gallistel et al., 2001; Corrado et al., 2005; Gallistel
et al., 2007). Successful application of the income-based model to
our previous results shows that quasi-optimal behavior can indeed
– at least under some circumstances – arise from learning algo-
rithms that make no explicit reference to optimality, as has been
noted previously with respect to the matching law (Herrnstein and

Vaughan, 1980; Vaughan, 1981; Sakai and Fukai, 2008). Impor-
tantly, conditions in our previous experiment were such that both
optimality and the income-based choice mechanism predicted the
same outcome in qualitative terms, namely stronger choice biases



M.C. Stüttgen et al. / Behavioural Processes 96 (2013) 59–70 69

data

fit

sim

session

session

0

0

0

session

0

1

0. 5

0

1

0. 5

session

0
0

1

0. 5

0

1

0. 5

720 919

920 935

6 1 8 3 6

7 19 31

52 66 7 19 36 51 66

46 59 7 23 36 54 64

.6|.3.6|.2.3|.6 .2|.6

.6|.3 .6|.2 .3|.6.2|.6

.6|.3.6|.2.3|.6 .2|.6

.6|.3 .6|.2 .3|.6.2|.6

p
ro

p
o

rt
io

n
 S

2
 r

e
s
p

o
n

s
e

s

p
ro

p
o
rt

io
n

 S
2

 r
e

s
p
o

n
s
e

s

p
ro

p
o

rt
io

n
 S

2
 r

e
s
p

o
n

s
e

s

p
ro

p
o

rt
io

n
 S

2
 r

e
s
p

o
n

s
e

s

Fig. 8. Application of the income-based model to a previously published data set with asymmetrical payoff matrices (Stüttgen et al., 2011b). � and ı parameters were taken
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rom the fits to the present data set and applied to the earlier data set from the sam

or the conditions with more extreme reinforcement ratios. Future
ork should examine the conditions under which the proposed

hoice algorithm approximates optimal behavior and investigate
he degree to which error- or punishment-related criterion shifts
nfluence adaptive choice behavior.

. Conclusion

Our finding that animals fail to maximize reinforcement in a
imple choice task poses important constraints on models for cri-
erion setting by excluding all models based on the maximization
f expected value (Boneau and Cole, 1967; Maddox, 2002; Stüttgen
t al., 2011b). The income-based model presented in this paper is
eant to provide a first attempt to unify two relatively separate

reas of research, namely reward-based learning (mostly studied
n animals) and psychophysics (mostly studied in human subjects).
n addition, the model may serve a useful role in upcoming inves-
igations in which behavioral output and single-neuron spike data
re acquired simultaneously to provide hidden decision variables
uch as integrated incomes to be related to single-neuron spike
utput in decision-related brain areas (Seo and Lee, 2009; Starosta
t al., 2013).
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