| Advanced Finite Element Methods | | | | | | |---------------------------------|---------|----------|----------------------|------------|-----------------| | Module-No./Abbreviation | Credits | Workload | Term | Frequency | Duration | | CE-WP04/FEM-II | 6 CP | 180 h | 2 nd Sem. | Summer | 1 Semester | | · | | | | term | | | Courses | | | Contact hours | Self-Study | Group Size: | | Advanced Finite Element Methods | | | 4 SWS (60 h) | 120 h | No Restrictions | ## **Prerequisites** Finite Element Methods in Linear Structural Mechanics (CE-P05), Basic knowledge in Structural Mechanics ## Learning goals / Competences After successfully completing the module, the students - are qualified to numerically solve nonlinear problems in engineering sciences by providing the methodological basis of the geometrically and physically nonlinear finite element method, - are able to set up and implement simple models for damage analyses by user defined subprograms, - can perform structural analyses, where the 1st order theory is not valid (e.g. cables, membrane structures, load bearing and stability analyses exceeding the load bearing capacity), and they can assess the results. #### Content The main topics of the course are: - formulation and finite element discretization of the basic equations for nonlinear materials and geometrically nonlinear analysis in structural mechanics - development of algorithms for the solution of the underlying nonlinear material and structural equations - application to analyze the structural behavior considering damage and large deformations - algorithms for damage models within the finite element programs - nonlinear stability analysis of structures - finite element method for the solution of contact problems ## Teaching methods / Language Lecture (2h / week), Exercises (2h / week) / English #### Mode of assessment Written examination (120 min, 100%) / Optional seminar papers, partially with presentations, to get bonus points for the exam (60 hours, deadlines will be announced at the beginning of the semester) ## Requirement for the award of credit points Passed final module examination # Module applicability MSc. Computational Engineering, MSc. Bauingenieurwesen ## Weight of the mark for the final score 6 % ## Module coordinator and lecturer(s) Prof. Dr. techn. G. Meschke, Assistants ### **Further information**