High-Performance Computing on Multicore Processors

Module-No./Abbreviation CE-WP25/HPCM	Credits 6 CP	Workload 180 h	Term 2 nd Sem.	Frequency Summer term	Duration 1 Semester
Courses			Contact hours 4 SWS (60 h)	Self-Study 120 h	Group Size: No Restrictions
High-Performance Computing on Multicore Processors			4 3 W 3 (00 II)	120 11	INO RESULTCHOUS
Proroquisites					

Prerequisites

Learning goals / Competences

After successfully completing the module, the students

- are enabled to design and create programs for multicore processors,
- can critically evaluate multi-threaded programs and shared-memory access patterns,
- can assess the benefits and challenges of multicore programming techniques.

Content

The lecture addresses parallelization on multicore processors. Thread-based programming concepts and techniques (pthreads, C++11 threads, OpenMP, OpenCL) are introduced and best practices are highlighted using applications from scientific computing.

An overview of the relevant hardware aspects including multicore architectures and memory hierarchies is provided. An in-depth introduction to multi-threaded programming on multicore systems with special emphasis on shared-memory parallelization is given and parallelization patterns, thread management and memory access strategies are discussed.

In hands-on sessions, programming exercises are used to discuss and illustrate the presented content.

Teaching methods / Language

Lecture (2h / week), Exercises (2h / week) / English

Mode of assessment

Written examination (120 min., 100%)

Requirement for the award of credit points

Passed final module examination

Module applicability

MSc. Bauingenieurwesen, MSc. Subsurface Engineering, MSc. Angewandte Informatik

Weight of the mark for the final score 6%

Module coordinator and lecturer(s)

Prof. Dr. A. Vogel, Assistants

Further information