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SUMMARY

Dysfunctions in hypothalamic–pituitary–adrenal (HPA) axis have been reported for several

mental disorders that are also often characterized by memory disturbances. It is now well

established that glucocorticoids influence cognitive processes by enhancing memory consoli-

dation and impairing memory retrieval. There is further evidence for an association between

HPA axis related disturbances and memory function in mental disorders. The present selec-

tive review provides a brief overview of HPA axis dysfunction and its impact on memory

function in major depressive disorder, posttraumatic stress disorder, and borderline person-

ality disorder. Furthermore, the relevance of these findings for therapeutic intervention is

discussed.

Introduction

Following the biopsychosocial model of mental disorders,

many studies have investigated the functioning of the

hypothalamic–pituitary–adrenal (HPA) axis, which is an im-

portant part of the neuroendocrine system involved in the

coordination of the stress response. Briefly, upon stress exposure,

corticotropin-releasing factor (CRF) is released from the hy-

pothalamus and is transported to the anterior pituitary, where it

stimulates the secretion of adrenocorticotropin (ACTH), which in

turn stimulates the synthesis and release of glucocorticoids (GCs)

from the adrenal cortex. The neuroendocrine stress response is

counter-regulated by circulating GCs via negative feedback mech-

anisms targeting the pituitary, hypothalamus, and hippocampus.

This negative feedback loop is essential for the regulation of the

HPA axis and, therefore, for the regulation of the stress response

[1]. GCs mediate their effects by binding to two subtypes of

intracellular receptors, the mineralocorticoid receptor (MR), and

the glucocorticoid receptor (GR). These two receptors differ in

their affinity and distribution within the CNS [2]. In addition,

a membrane-bound MR has recently been characterized [3].

Because most of the effects associated with GCs–especially those

that are related to the CNS–have been attributed to GR, we will

focus here on this particular receptor type. GR have their highest

density in the hippocampus [4] but are also prominent in the

prefrontal cortex [5], which are both brain regions of substantial

importance for memory function.

In healthy subjects, multiple previous investigations have found

that acute administration of GCs impairs long-term memory re-

trieval [6–8]. Similar effects have been obtained using psychosocial

laboratory stressors [9,10]. Memory consolidation, on the other

hand, seems to be positively influenced by cortisol [7,11]. In ad-

dition, working memory is also impaired by GCs, whereas simple

emotional learning (fear conditioning) as well as rigid stimulus re-

sponse or habit learning is enhanced [5,12,13].

Several mental disorders are characterized by memory distur-

bances, which will be described later. These alterations are not

just secondary symptoms but must be regarded as key features

of these disorders. In major depressive disorder (MDD), mem-

ory disturbances are one of the symptoms defined in the Diag-

nostic and Statistical Manual of Mental Disorders (DSM-IV), and

memory bias to negative information has been studied extensively

[14]. In contrast, posttraumatic stress disorder (PTSD) is charac-

terized by intense memories in which patients re-experience their

traumatic experiences [15]. Furthermore, borderline personality

disorder (BPD) is also characterized by neuropsychological dis-

turbances [16], but comorbid axis I disorders might contribute

to the clinical picture and perhaps explain some of the observed
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neuropsychological deficits [17]. HPA axis dysregulations are not

only a correlate of the these mental disorders but also predict

symptom development [18,19], treatment resistance [20], and risk

for suicide [21], which points to the importance of hormonal

stress-regulation systems in psychopathology.

This review aims to integrate findings on the relationships be-

tween HPA axis and cognitive functioning (i.e., memory) in se-

lected mental disorders, including MDD, PTSD, and BPD.

Major Depressive Disorder

MDD is one of the most prevalent mental disorders, with a

12-month prevalence rate of up to 10% [22]. A major depres-

sive episode is characterized by depressed mood and/or loss of in-

terest or pleasure accompanied by sleep disturbances, psychomo-

tor agitation or retardation, fatigue and loss of energy, feelings of

worthlessness or excessive or inappropriate guilt, diminished abil-

ity to think or concentrate, as well as recurrent thoughts of death

or suicide or even suicide attempt [23]. Biological, psychological,

and social factors are known to play a role in the development of

MDD, suggesting that depression results when a pre-existing vul-

nerability, or diathesis, is activated by stressful life events [24].

HPA Axis

Dysregulation of the HPA axis is a prominent finding in MDD.

Several studies [25–29] but not all [26,30,31] found an enhanced

basal and stimulated cortisol release in MDD. Furthermore, high

cortisol levels after dexamethasone (DEX) administration (so-

called Dex nonsuppression) has been reported in MDD [32], but

again not all studies confirmed this effect [33]. These diverging

findings might be due to differences in study populations, type of

depression, and factors which are known to influence HPA axis,

for example, psychotic versus nonpsychotic patients [31], melan-

cholic versus atypical depression [34], comorbid anxiety [35], age

[36], gender [37], and history of childhood trauma [24,38].

The finding of reduced feedback sensitivity has been interpreted

as reflecting an exaggerated CRF drive [39] and/or as a reduc-

tion of functioning of GRs [40,41]. One of the most sensitive

measurements of HPA axis feedback sensitivity is the combined

DEX/CRF test. In that test, HPA axis activity is initially suppressed

by dexamethasone treatment before exogenous CRF is given the

following day. In depressed patients as well as in persons with

childhood trauma, a pronounced escape from this suppression has

been found with elevated ACTH and cortisol after CRF administra-

tion, further supporting the idea of reduced GR functioning [32].

In support of this hypothesis, post-mortem studies have reported

a reduced GR mRNA in depressed patients [42]. Furthermore, an

increased methylation of the GR gene promoter inhibiting GR ex-

pression [43] has been reported. GR gene polymorphisms are also

discussed to be associated with depression [44,45]. Furthermore,

recent findings suggest that single nucleotide polymorphisms of

the GR gene, namely ER22/23EK, BclI, and 9beta A/G may be

associated with an increased risk for major depression [29,30].

Traditionally, the GR has been at the focus of most studies ex-

amining neuroendocrine pathways to depression. However, re-

cent evidence suggests that MR dysfunction might also play a role

[2,46,47]. In light of the MR/GR balance model of depression [4],

combined investigations of both receptors are now required.

The results of abnormal HPA axis functioning in patients with

MDD have generally been interpreted as reflecting an exaggerated

CRH drive and/or a reduced functioning of GRs. A possible shift

of MR/GR balance seems to play an important role in this process

[28]. Although it is still a matter of debate, GR and/or MR function

and genetic variations of them appear to be important factors in

the pathogenesis of MDD.

Memory

Memory disturbances are frequent in MDD. One of the most

thoroughly investigated cognitive functions is hippocampal-based

episodic/declarative memory. Cognitive performance in episodic

memory tasks, including paragraph delayed recall, learning, and

retrieval of word lists is impaired in MDD patients [48–50]. Dis-

turbances in information processing, including a negative bias, is

also prominent in MDD, although not all studies agree [51]. Fur-

thermore, autobiographical memory seems to be less specific in

these patients [52].

Surprisingly, only few studies have investigated the association

between HPA axis functioning and memory performance in de-

pression. Some studies found associations between cortisol levels

and cognitive impairment in depressed patients [53–57], or pre-

dominantly in depressed patients with psychotic symptoms [58],

but other studies failed to find such associations [59–63]. How-

ever, the cross-sectional and correlational design of these studies

renders them inconclusive with regard to causal directionality.

To our knowledge, until recently only one study has investi-

gated the effect of GC administration on memory in MDD [64].

Bremner et al. found that 2 days of 2 mg DEX treatment im-

proved episodic memory in patients with MDD and suggested that

a reduction of cortisol after DEX might have led to the observed

memory improvement. In a recently published study by our work-

ing group, we investigated the effect of acute cortisol administra-

tion on autobiographic memory and found memory impairment in

healthy subjects after cortisol intake [65]. In patients with MDD,

no further reduction of autobiographical memory performance af-

ter cortisol could be observed but memory performance was worse

compared to the control group (Figure 1). We hypothesized that

the lack of an effect of acute cortisol administration on memory

performance might be due to reduced functioning of hippocampal

and/or prefrontal GRs. However, these two studies are not com-

parable with regard to the chosen GC (DEX vs. hydrocortisone)

and with regard to the study design (repeated GC treatment vs.

single treatment), which complicates the interpretation of these

contrasting results.

Implication for Therapeutic Interventions

With respect to the treatment of depression, it has been shown

that remission from depression is associated with normalization

of HPA axis dysfunction. Impaired cortisol suppression, for ex-

ample, is known to normalize after symptom improvement [32]

but not within the depressive episode [66]. Thus, several phar-

macological approaches aim to reduce HPA axis activity. Possible
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Figure 1 Autobiographicmemoryperformanceafter10mghydrocortisone

and placebo. Evidence for reduced central glucocorticoid sensitivity in ma-

jor depressive disorder (MDD). Although cortisol administration impaired

autobiographic memory in healthy controls (n = 16), it had no effect on au-

tobiographical memory in patients withMDD (n= 16). Taken from Schlosser

et al. [65] with permission from Elsevier.

options are CRF and GR antagonists [67–71]. Alternatively, future

approaches might target the MR or GR receptor (e.g., increasing

the expression or sensitivity of the GR). To our knowledge, only

one study has investigated the impact of antiglucocorticoids on

cognitive function in mood disorder [72]. In this study, 20 patients

with bipolar disorder were treated with mifepristone or placebo for

1 week. In contrast to placebo treatment, spatial working mem-

ory, verbal fluency, and spatial recognition memory improved

significantly with mifepristone, irrespective of improvement in

depressive symptoms. The improvement in cognition correlated

inversely with basal cortisol levels. This suggests that initially im-

paired GC receptor function might be restored by the drug and

a subsequently appropriate MR/GR balance might then account

for the enhancement in cognitive performance. In addition, most

antidepressants with known action on the serotonergic system

influence HPA axis activity [73] because the HPA axis and the

serotonergic system are interconnected [74,75]. Interestingly,

citalopram, a selective serotonin reuptake inhibitor, has been

shown not only to affect HPA axis and depression but also to im-

prove working memory [76]. In another study, a 7 months treat-

ment with an SSRI resulted in a significant improvement in mem-

ory function and a reduction in UFC excretion, but did not alter

hippocampal volume [57]. Thus, it seems that antidepressants may

improve hippocampal-mediated memory function without induc-

ing structural changes.

Future treatment studies should assess HPA alterations as well

as memory performances before and after treatment.

Posttraumatic Stress Disorder

PTSD follows exposure to a traumatic stressor, defined as a threat

to the life of self or close other, associated with intense fear,

horror, or helplessness. Traumatic experiences include childhood

abuse, accident, rape, assault, war, and natural disaster. PTSD is

characterized by three distinct but co-occurring symptoms: re-

experiencing the trauma, avoidance, and hyperarousal [23]. The

estimated lifetime prevalence of PTSD is 7.8% in the US popu-

lation [77]. Stress-induced changes in neurobiological systems are

believed to account for PTSD symptoms, such as an enhanced sen-

sitization to stress, enhanced physiological arousal (i.e., hyperac-

tivity of the noradrenergic system), and disturbances in learning

and memory [78].

HPA Axis

In contrast to MDD, cortisol findings in PTSD suggest reduced

rather than enhanced hormone concentrations [79–83]. However,

these results are not uniformly consistent across all studies, and

several factors, such as differences in trauma type, symptom pat-

terns, gender, comorbidity with other mental disorders as well as

genetic factors and other predisposing factors have been discussed

to contribute to this inconsistency [83]. Furthermore, some studies

suggest that comorbid depression plays an important role in HPA

axis alteration in PTSD [84,85]. Beyond this so-called hypocor-

tisolism, an enhanced suppression after a low dose (0.5 mg) of

dexamethasone has been reported repeatedly [80]. This has been

interpreted in the context of increased negative feedback regula-

tion of the HPA axis due to increased GR binding [86,87]. Inter-

estingly, in healthy subjects, enhanced suppression was found to

be associated with higher levels of anxiety, interpersonal sensitiv-

ity, and avoidant coping strategies [88]. The lower dose of dexam-

ethasone has been used because the standard dose of 1 mg almost

completely suppresses cortisol secretion in normal people. To iden-

tify increases in negative feedback sensitivity, the dose of dexam-

ethasone must be lowered to 0.5 mg, to avoid a floor effect and

maximize distinctions between normal suppressors and hyper-

suppressors. Because of the fact that dexamethasone does not pass

the blood–brain barrier and differs in pharmacokinetic and phar-

macodynamic features from dexamethasone, a novel suppression

test has been developed, that is, the prednisolone suppression test

[89]. Further research in PTSD should, thus, move beyond the

standard methods. At higher levels of the HPA axis, namely at

the central nervous system, increased concentration of CRF has

been found [78]. The finding of a blunted ATCH response to ex-

ogenous CRF, possibly due to down-regulation of pituitary CRF

receptors, further supports the hypothesis of an enhanced activity

of hypothalamic CRF [78].

Only few studies investigated prospectively the relationship be-

tween cortisol release and traumatization. These investigations

found that lower cortisol measured shortly after the occurrence of

a trauma was associated with the development of PTSD, suggesting

that hypocortisolism might be a pre-existing risk factor that might

lead to a maladaptive stress response [80]. Interestingly, the find-

ing of a reduced hippocampal size [90], which has been formerly

interpreted as result of enhanced cortisol release in response to the

trauma, seems to be also a pre-existent risk factor as suggested by

a twin study [91]. As mentioned earlier, the hippocampus is not

only rich in GR but also important for memory, including autobio-

graphical memory function. Of note, autobiographical memory is

implicated in PTSD (e.g., in terms of intrusive memories).
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Memory

Neuropsychological alterations are an important feature of the

clinical presentation of PTSD. Several studies revealed problems

with learning and memory, including deficits in verbal declarative

memory functions and attention [92] as well as reduced autobi-

ographical memory specificity and overgeneralized memory [93].

Patients with overgeneralized memory have difficulties in retriev-

ing specific autobiographical events; instead, they tend to reply

with abstract or general memory content (e.g., they summarize

several different events) [94].

Studies that have investigated the effects of GC treatment on

learning and memory in PTSD have yielded inconclusive results.

One study reported a stronger negative effect of hydrocortisone on

declarative memory in PTSD, compared to controls. Furthermore,

in contrast to the control group patients showed impairments in

working memory after pharmacological treatment [95]. In older

PTSD patients, further evidence for a more pronounced effect of

cortisol was obtained, but this time enhanced working memory

performance after injection of hydrocortisone was observed [96].

Another study reported that hydrocortisone led to an impaired

hippocampal-dependent trace eye-blink conditioning, which is a

simple form of associative learning, only in PTSD patients but not

in healthy control participants [97]. These findings are in line with

the hypothesis of an enhanced GC sensitivity in these patients,

which results in an exaggerated effect of GCs on neuropsycho-

logical functioning [47]. Contrary to these results, another study

reported blunted effects of dexamethasone on declarative memory

in PTSD [98]. However, in this experiment not only the pharma-

cological agent but also the treatment regime differed from the

other studies, that is, dexamethasone was given for 2 days before

memory testing.

With regard to PTSD symptoms, one might suggest that lower

cortisol (in concert with an increased noradrenergic output) leads

to a less well-integrated memory trace and integration of the trau-

matic event into autobiographical memory. Because cortisol is

known to have inhibitory effects on memory retrieval, hypocor-

tisolism might be associated with intrusive memories, flashbacks,

and nightmares [13,79].

Implication for Therapeutic Interventions

Up to now only few studies have aimed to transfer neuroendocrine

findings into treatment strategies. In one study, for example, pa-

tients were treated after cardiac surgery with hydrocortisone or

standard therapy during the perioperative period. The authors

found hydrocortisone treatment to be associated with a lower in-

tensity of chronic stress and PTSD symptoms after 6 months [99]

(Figure 2). This is in line with a former study of this group, in

which the protecting effects of hydrocortisone during septic shock

for the development of PTSD had been shown [100]. Thus, such

a treatment immediately after the trauma might be an effective

secondary-prevention strategy. In addition, in three patients with

chronic PTSD, a reduction of symptoms has been reported after

10 mg/day cortisol over 1 month [101]. However, the results of

this pilot study have yet to be replicated in a larger sample. Other

Figure 2 Posttraumatic stress disorder (PTSD) symptom scores in patients

from the hydrocortisone group (N= 26) and patients from the control group

(N = 22) with no or one category of traumatic memory and more than one

category of traumaticmemory, respectively. Evidence for the preventing ef-

fect of hydrocortisone treatment on PTSD symptoms. Taken from Schelling

et al. [68] with permission from Elsevier. Note: The broken black line shows

the 35-point cut-off value for PTSD diagnosis by the PTSD screening Ques-

tionnaire. Black dots indicate outliers. ∗ indicates a significant reduction

in PTSD scores in the hydrocortisone group (with multiple categories of

traumatic memory) compared to the control group.

intervention ideas, such as treatment with GR blocker, such as

mifepristone, also need empirical support [102].

BPD: Psychopathology and Clinical
Features

BPD is characterized by intense and rapidly changing mood states

as well as by impulsivity, self-injurious behaviors, fear of aban-

donment, unstable relationships, and unstable self-image [23]. Pa-

tients with BPD often suffer from comorbid axis I disorders, with

mood disorders (96.3%) and anxiety disorders (88.4%) being the

most prominent [103].

Patients with BPD frequently report early, multiple, and chronic

adverse or even traumatic experiences, such as repeated sexual or

physical abuse or emotional or physical neglect, and it has been

suggested that early life stress might be an important risk factor in

the development of BPD [104].

HPA Axis

Most studies that investigated the HPA axis in BPD and used the

1 mg dexamethasone suppression test have yielded inconclusive

results. However, most of these results suggested an association of

reduced feedback inhibition with affective dysregulation or even

with comorbid MDD [17]. In many of these studies, no formal di-

agnostic procedure (e.g., diagnostic interview, such as the SCID)
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Figure 3 The association between HPA axis dysregulation (basal cortisol

concentrations and suppression (feedback) after Dexamethasone applica-

tion) and core psychopathology in BPD: two potential dimensions. Taken

fromWingenfeld et al. [17], with permission from Elsevier.

was applied so that the data are difficult to interpret. More recent

studies not only used more appropriate diagnostic procedures but

some also used the low-dose DST to detect hyper-suppression. In

sum, there is now evidence that comorbid disorders, such as MDD

and PTSD, play an important role in terms of HPA feedback regu-

lation in BPD [105,106].

Only a few studies so far have investigated basal cortisol re-

lease, suggesting enhanced cortisol concentrations [17]. Further-

more, an exaggerated ACTH and cortisol response in the combined

DEX/CRF test has been found, but only among those who reported

childhood abuse [106]. Again comorbid disorders, especially PTSD,

seem to have an important influence on endocrine reactions [17].

Furthermore, dissociation, which is a prominent symptom in case

of childhood trauma, has been shown to influence HPA axis func-

tioning in BPD [107].

To conclude, studies investigating HPA axis functioning in BPD

have provided compelling evidence for the impact of comorbid

PTSD and depression on HPA axis feedback regulation in BPD

(Figure 3). One might hypothesize that there are at least two

subgroups of BPD patients with different endocrine patterns: one

predominantly characterized by trauma-associated symptoms with

unaltered to enhanced feedback sensitivity and normal to reduced

cortisol release, and another subgroup with mood disturbances as

core symptoms and HPA axis dysfunction in form of enhanced

cortisol release and reduced feedback sensitivity [17].

Memory

Since the 1990s, increasing efforts have been made to charac-

terize neuropsychological functioning of BPD patients. The ma-

jority of these studies aimed to determine neuropsychological

functioning using standard tests and batteries with neutral stim-

uli. Although the results of many studies suggested a significant

impairment concerning episodic memory functioning [16], other

studies were unable to detect such deficits [108]. Interestingly, the

pattern of results changed when emotional valence was also con-

sidered in more sophisticated experimental designs. The outcomes

of many of these studies showed deficits among BPD patients re-

garding the control and inhibition of emotional interference. For

example, one study reported an enhanced retrograde and antero-

grade amnesia in BPD patients in response to the presentation

of stimuli with negative valence [109]. Using the directed forget-

ting task, a reduced inhibition of emotionally negative words in

BPD patients has been documented [110]. Accordingly, a recent

study also suggests no general impairment of verbal memory func-

tions in BPD but found that control and inhibition of interference

of emotionally significant material seem to be disturbed [111].

Furthermore, comorbid disorders, such as PTSD seem to play an

important role in explaining the attentional bias found in these

patients [112].

The findings of impairments in the control and inhibition of

emotionally negative information might be interpreted in light

of psychobiological research. Neuroimaging studies have revealed

evidence for a hyperactive responsiveness of the amygdala in re-

sponse to emotional stimuli and a reduced size of the ACC and

hippocampus in BPD. Thus, a dysfunctional network of brain re-

gions that are involved in the regulation of emotions and response

inhibition might underlie these effects [17].

Although memory dysfunctions and HPA dysregulation are

prominent in BPD, these associations have attracted little scien-

tific attention. For example, there is not a single study published as

of today that investigated the effects of cortisol administration on

cognition in BPD. Thus, studies that integrate neuroendocrinology

and neuropsychology are urgently needed.

Implications for Therapeutic Interventions

Because of the equivocal findings of HPA axis regulation in BPD,

attempts to study pharmacological treatment strategies in this field

are rare. However, there is evidence that the use of serotonin re-

uptake inhibitors, that is, fluvoxamine, may regulate the hyper-

responsiveness of the HPA axis in BPD patients [113], especially

in those patients who reported childhood abuse. Interestingly, the

magnitude of the reduction was not dependent on the presence

of comorbid PTSD and depression. This kind of research approach

holds promise to integrate endocrine and clinical approaches of

BPD. Another study has investigated the effects of carbamazepin

on HPA axis in BPD, which is not only used in the treatment of

epilepsy but also of affective disorders, and found increased post-

dexamethasone plasma cortisol values [114]. However, the un-

derlying mechanisms as well as the clinical benefit are still under

discussion.

Summary and Conclusions

There is compelling evidence that stress and GCs affect learning

and memory, with impairing effects on memory retrieval and en-

hancing effects on memory consolidation [115]. Several mental

disorders are characterized by dysfunctions of the HPA axis as

well as memory disturbances, which might be associated with each

other. Thus, recent research has aimed to transfer neuroendocrine

findings into treatment strategies. In PTSD, for example, there is

some evidence that GC administration might reduce the retrieval

of aversive memories [116], but more research is needed to draw

final conclusions about effectiveness and underlying mechanisms.
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In major depression, much effort is currently being directed at the

development of pharmacological agents that may normalize HPA

axis activity, with CRF and GR antagonists being of particularly

great interest [68,69]. Of note, there is evidence for subgroups,

with different findings on HPA axis regulation not only in BPD

[17] but also in depression, as found by the studies of Heim [24],

suggesting an important impact of early trauma on HPA axis func-

tioning. Furthermore, it seems that different treatment strategies

might be needed for patients with and without trauma, with psy-

chotherapeutic strategies being of great importance [117]. Thus,

an enhanced recognition of interindividual differences appears in-

dicated. Accordingly, the development of new treatment strategies

should take these findings into account to provide a more individ-

ually tailored therapy.

The HPA axis is not an isolated system in the regulation of

the stress response. There is a close association between the lo-

cus coeruleus-noradrenergic system and HPA axis [118]. Together

they interact at multiple levels in the periphery and the brain

and influence memory function [13]. Several brain regions are

involved in these processes, such as, for example, the amygdale

and hippocampus as well as prefrontal and temporal areas [119].

The locus coeruleus-noradrenergic system is especially important

in the context of emotional memory and conditioning. There is

evidence that noradrenergic activation leads to enhanced memory

consolidation as well as enhanced fear conditioning but reduced

extinction [119–121]. Interestingly, adrenergic activation seems to

mediate the effects of GC on memory [122–124]. In fact, the dis-

orders discussed earlier are characterized not only by alterations

in emotional memory, learning and information processing but

also by disturbances in locus coeruleus-noradrenergic system as

well as dysfunctions in related brain areas [17,125–129]. Up to

now, clinical studies that investigate the interaction between locus

coeruleus-noradrenergic system and HPA axis and its association

with memory in mental disorders are rare. However, in major de-

pression, there is first evidence for a disturbed interaction between

these systems [125,130].

Another important neurotransmitter system in this context is

the serotonergic system. In MDD as well as BPD, dysfunctions of

the serotonergic system have been reported repeatedly, including

reduced 5HT1A receptor binding in the medial prefrontal cortex,

amygdala and hippocampus, or lower cortisol and prolactine re-

sponses to meta-chlorophenylpiperazine [17,131,132]. There are

strong interconnections among the hippocampus, stress response,

and the serotonergic system [133]. Interestingly, in BPD, frontal

brain regions as well as parts of the limbic system seem to be asso-

ciated with dysregulation of the serotonergic system. Symptoms of

impulsivity, aggression, and suicidal behavior seem to be strongly

mediated by the serotonergic system and are prominent features

in patients with BPD [132]. Furthermore, fluvoxamine treatment

has been found to reduce the hyperresponsiveness of the HPA axis

in BPD patients, especially in those with a history of sustained

childhood abuse [134]. Serotonin also mediates the effects of stress

on hippocampal GR expression [135,136]. One might hypothesize

that stress-related alteration of HPA axis regulation in concert with

diminished serotonergic functioning may contribute to change

in brain structure and metabolism in the disorders discussed

here.

Results from neuroimaging studies might help to better un-

derstand the set of presented findings. For depressive disorders,

Drevets et al. have suggested that an extended “visceromotor

network,” including orbital and prefrontal brain regions inter-

fere with those systems that modulate emotional behavior [137].

In fact, an increased activation of the amygdala as well as a

reduced activation of the cingulate gyrus and reduced hippocam-

pal volume has been reported for MDD patients [138,139].

Interestingly, deficits to activate hippocampus and anterior cin-

gulate cortex (ACC) during a verbal memory encoding task have

been demonstrated in patients with MDD [140]. However, these

findings are not specific for depression. In BPD, a reduced hip-

pocampal size has been also reported as well as volume reductions

in the ACC and the amygdala. Accordingly, functional imaging

studies have found a decreased activation in these regions, except

for the amygdala, where enhanced activation has typically been

reported [17]. Furthermore, prefronatal areas are also involved,

which leads to the assumption of a disturbed fronto-limbic net-

work in BPD [141], which shows some concordance with those

brain region which seem to be involved in MDD. In PTSD, were

most HPA axis finding are contrary to those found in MDD and

BPD, neuroimaging studies also revealed evidence of dysfunctions

in the hippocampus (mostly reduced size and activity) and the

amygdala (enhanced activity). Furthermore, prefrontal regions as

well as the ACC seem to play an important role [128]. However,

on the central level of the HPA axis, that is, CRF release, PTSD is

also characterized by an enhanced activation, which has also been

suggested for MDD [142]. Possibly, the finding of hypocortisolism

at the periphery might be an adaptation to a chronically activated

HPA axis.

As mentioned previously, the hippocampus plays an important

role in memory function and has a high density of GR. Therefore,

it is thought to be a stress-sensitive brain region and, thus, sen-

sitive for the damaging effects of stress and GCs [133]. Repeated

stress seems to result, for example, in a disruption of neurogen-

esis and dendritic atrophy of the hippocampus [143]. However,

whether these alterations have to be interpreted as a consequence

of GC exposure or have to be understood as a pre-existing risk fac-

tor is still a matter of debate [144]. Other brain regions also seem to

be negatively influenced by chronic stress (e.g., the prefrontal cor-

tex). In contrast chronic stress has been found to increase dendritic

growth in the amygdala, which seems to be associated with greater

anxiety [145,146]. These observations fit with clinical studies sug-

gesting enhanced amygdala activation in several mental disorders,

such as PTSD or BPD.

In sum, the mental disorders discussed here appear to be char-

acterized by distinct patterns of dysregulation in stress regulation

systems, with similarities at central levels of the HPA axis but, in

part, distinctions at the periphery. Furthermore, they show several

cognitive impairments, with memory disturbances being promi-

nent and part of the diagnostic criteria. The discussed alterations

in several brain regions, which can be described in simplified fash-

ion as disturbed fronto-limbic networks, might contribute to these

memory problems. Possibly, stress hormones are one reason for

neural alterations, such as atrophy of specific brain regions. Fur-

thermore, stress hormones have a direct impact on memory func-

tion and, thus, may be directly associated with related memory
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disturbances in mental disorders. Within the last years, novel ap-

proaches in pharmacotherapy and psychotherapy have emerged.

There is some evidence, for example, that antiglucocorticoids have

an antidepressant effect, but controlled trials are needed. Further-

more, there is also preliminary evidence that HPA axis dysfunc-

tion in MDD patients can be altered via psychotherapy [147]. This

is of importance for patients who are known to respond less to

pharmacotherapy, that is, MDD patients with a history of early

trauma [117]. Studies in healthy human subjects indicate that the

effect is partly mediated by the anticipatory appraisal of the stres-

sor. Evidently, the relationship between GCs and cognition is not

one-sided but reciprocal. Future studies in patient populations in-

cluding measures of HPA axis and cognitive function are needed to

replicate the preliminary positive results in the treatment of cogni-

tive impairment with either pharmacotherapy or psychotherapy.

Furthermore, more integrative research is needed, which com-

bines, for example, endocrine and imaging methods, focussing on

the dynamic interplay of GCs with brain structures involved in

cognitive performance.
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