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Dissociation of Neuronal, Electrodermal, and Evaluative Responses in
Disgust Extinction
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Disgust extinction is an important mechanism relevant for the treatment of psychiatric disorders.
However, only a few studies have investigated disgust extinction. Moreover, because disgust sensitivity
(DS) is considered as a relevant factor for learning processes, this study also investigated the potential
relationship between DS and disgust extinction learning. The aim of this study was to explore the
neuronal correlates of disgust extinction, as well as changes in skin conductance responses (SCRs) and
evaluative conditioning. Twenty subjects were exposed to a differential extinction paradigm, in which a
previous conditioned, and now unreinforced, stimulus (conditioned stimulus, CS�) was compared to a
second stimulus (CS�), which was previously not associated with the unconditioned stimulus (UCS).
Extinction learning was measured on three different response levels (BOLD responses, SCRs, and
evaluative conditioning). Regarding evaluative conditioning, the CS� was rated as more unpleasant than
the CS�. Interestingly, significantly increased amygdala responses and SCRs toward to the CS� were
observed. Finally, a (negative) trend was found between DS scores and BOLD responses of the prefrontal
cortex. The present findings showed a dissociation of different response levels. The increased CS�
responses could be explained by the assumption that the increased amygdala activity may reflect a safety
learning signal during the first extinction trials and the subjective focus may therefore shift from the CS�
to the CS�. The correlation finding supports previous studies postulating that DS hampers extinction
processes. The present results point toward dissociations between the response levels in context of
extinction processes.
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Anxiety disorders are the most common psychiatric disorders
with a lifetime prevalence of about 30% (Shin & Liberzon, 2010).
A growing number of studies have argued that disgust learning and
disgust extinction processes are important mechanisms in the
maintenance and treatment of psychiatric disorders; for example,
obsessive-compulsive disorders (OCD), eating disorders, and pho-
bias (Mason & Richardson, 2010; Rohrmann & Hopp, 2008;
Rohrmann, Hopp, Schienle, & Hodapp, 2009; Schienle, Schäfer,
Hermann, & Vaitl, 2009; Schienle, Stark, & Vaitl, 2001). Thus, the

investigation of the underlying mechanisms of disgust extinction
processes might contribute to a better understanding of these
disorders.

In extinction learning, a previously conditioned stimulus (CS�)
is no longer paired with the unconditioned stimulus (UCS), while
another stimulus (CS�) was never paired with the UCS. Findings
have repeatedly shown that this procedure results in the decrease
and extinction of previous conditioned responses (CRs) and in the
formation of an “extinction memory” (Kalisch et al., 2006; Lin,
Wang, Tai, & Tsai, 2010; Milad et al., 2010; Milad, Wright et al.,
2007; Milad & Quirk, 2002; for review see: Milad & Quirk, 2012;
Myers & Davis, 2007; Quirk & Mueller, 2008). In the last decade,
human extinction learning has gained increased attention. Typi-
cally, three response levels are investigated: skin conductance
responses (SCRs), changes in preference ratings (evaluative con-
ditioning), and hemodynamic responses. Interestingly, these three
response systems show a dissociation with respect to the extinction
of CRs: Regarding SCRs, no significant differences between CS�
and CS� were observed during extinction (Graham & Milad,
2011; Milad, Igoe, Lebron-Milad, & Novales, 2009; Milad, Wright
et al., 2007; Milad & Quirk, 2002; Milad et al., 2010; Myers &
Davis, 2007). In contrast, with respect to subjective ratings, pre-
vious studies have consistently observed significant differences
between CS� and CS� even after extinction learning (Blechert,
Michael, Williams, Purkis, & Wilhelm, 2008; Dwyer, Jarratt, &
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Dick, 2007; Vansteenwegen, Francken, Vervliet, De Clercq, &
Eelen, 2006). Regarding the neuronal correlates of extinction,
previous studies have identified a neuronal circuit including the
amygdala, the ventromedial prefrontal cortex (vmPFC), and the
hippocampus (Milad & Quirk, 2012; Quirk & Mueller, 2008;
Sotres-Bayon, Cain, & LeDoux, 2006).

Whereas considerable progress has been made in the under-
standing of the neuronal correlates of human fear extinction learn-
ing, to our best knowledge, disgust extinction has been almost
neglected so far. Only few studies have investigated subjective
ratings and peripheral-physiological responses during disgust ex-
tinction (Mason & Richardson, 2010; Olatunji, Forsyth, & Che-
rian, 2007). Notably, these studies showed important differences to
fear extinction; implicating that disgust CRs (e.g., in SCRs) are
resistant to extinction learning. For instance, Olatunji et al. (2007)
found significant differences between CS� and CS� in evaluative
conditioning and SCRs during extinction learning. Mason and
Richardson (2010) confirmed this resistance to extinction by
showing CS�/CS� differences in evaluative conditioning and on
the behavioral level (e.g., in a visual avoidance task). Importantly,
the studies by Olatunji, Lohr, Smits, Sawchuk, and Patten (2009)
and Mason and Richardson (2010) observed that disgust learning
and extinction was altered by individual disgust sensitivity (DS).
Consequently, the alteration of disgust learning and extinction
through DS may provide an explanation for the robust observation
that DS represents a vulnerability factor for certain psychiatric
disorders (Aharoni & Hertz, 2012; Deacon & Olatunji, 2007;
Engelhard, Olatunji, & de Jong, 2011; Moretz & McKay, 2008;
Olatunji, Sawchuk, de Jong, & Lohr, 2006; Rohrmann et al., 2009;
Schienle et al., 2003).

The aim of the present study was to explore hemodynamic
responses, SCRs, and evaluative conditioning in disgust extinc-
tion. In addition, we also explored the potential influence of DS.
On the neuronal level, we were especially interested in the
amygdala, the hippocampus, and the vmPFC. Additionally, we
investigated the insula due to its role in disgust conditioning and
disgust processing (Calder et al., 2007; Klucken, Schweckendiek
et al., 2012). Despite the fact that most studies found increased
activity to the CS�, we also analyzed the contrast CS� � CS�
due to prior reports of increased activity to the CS� (for the
different results see: Knight, Smith, Cheng, Stein, & Helmstetter,
2004; Milad, Wright et al., 2007; Milad & Quirk, 2012; Myers &
Davis, 2007; Phelps, Delgado, Nearing, & LeDoux, 2004; Quirk &
Mueller, 2008). Finally, we investigated the association between
DS and disgust extinction.

This study—focusing on the extinction phase—is part of a
larger project that investigated the role of disgust in associative
learning. Data of the conditioning phase have already been pre-
sented in detail elsewhere and will be reported only briefly
(Klucken, Schweckendiek et al., 2012).

Materials and Method

Participants and Sample Description

Twenty-two subjects participated in the study. The sample is
identical to the sample in Klucken, Schweckendiek et al. (2012).
Subjects were recruited from campus advertisements and received
8 Euro/h for participation. All subjects were right-handed and had

normal or corrected-to-normal vision. None of them had a history
of psychiatric or neurological disorders. Participants were in-
formed about the procedure in general and gave written informed
consent. All experimental procedures were in accordance to the
Declaration of Helsinki. Due to technical problems and extensive
head motion during scanning, two subjects were excluded from all
analyses, leaving a total of 20 subjects in the analyses of the fMRI
and the evaluative conditioning data (10 males: mean age: 23.4;
SD: 2.1; 10 females: mean age: 23.2; SD: 3.6).

Stimuli

Two neutral visual stimuli (two squares, with either continuous
or dotted borders) served as CS� and CS� and were followed by
one of the 21 UCS-pictures. The UCS consisted of 21 disgust-
inducing pictures (e.g., poor hygiene, rotten food, etc.), which
were taken from the International Affective Picture System (Lang,
Bradley, & Cuthbert, 2005) or were collected by the authors. These
pictures have been used repeatedly in previous studies (Klucken,
Kagerer et al., 2009; Klucken, Schweckendiek et al., 2012; Stark
et al., 2007). The IAPS pictures were chosen based on a rating
study by Libkuman and colleagues (Libkuman, Otani, Kern, Viger,
& Novak, 2007) and were matched with respect to valence and
arousal as far as possible. All stimuli had identical luminance and
were presented in an 800 � 600 pixel resolution. The stimuli were
projected onto a screen at the end of the scanner (visual field �
18°) using an LCD projector (EPSON EMP-7250, Seiko EPSON
Corporation, Japan).

Extinction Procedure

The differential delay conditioning procedure contained an ac-
quisition and an extinction learning phase. A detailed fMRI pro-
tocol and results from the acquisition phase can be found else-
where (Klucken, Schweckendiek et al., 2012). Since contingency
awareness may alter CRs (Hamm & Vaitl, 1996; Klucken, Kagerer
et al., 2009; Klucken, Schweckendiek et al., 2009; Klucken, Tab-
bert et al., 2009; Tabbert et al., 2011; Weike, Schupp, & Hamm,
2007; for review see Lovibond & Shanks, 2002; Hamm & Weike,
2005), subjects were instructed to pay attention to all stimuli and
to try to figure out possible connections between the CS and the
UCS (e.g., Schiller et al., 2008). In the acquisition phase, 42 trials
were presented (21 per CS; duration 8 seconds) with the CS�
being followed by one of the 21 disgust-related pictures in each
trial (UCS) shown for 4s (100% reinforcement). Each UCS picture
was shown only once. In the extinction learning phase, 22 trials
were presented (11 per CS) with the same CS duration and without
UCS reinforcement. The intertrial intervals (ITI) ranged from 12.5
s to 15 s. The first two trials (one CS�, one CS� trial) were
excluded from the analyses because learning could not yet have
occurred (Phelps et al., 2004). In an equally distributed interval of
1�2 s after UCS offset, participants had to react to a simple
distractor task (duration 1 s) to enhance overall vigilance (Goldin,
McRae, Ramel, & Gross, 2008; Schweckendiek et al., 2011).
Finally, participants filled out the German version of the Ques-
tionnaire for the Assessment of Disgust Sensitivity (Schienle,
Walter, Stark, & Vaitl, 2002).
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Evaluative Conditioning

Participants rated valence and arousal of the CS�, the CS�, and
the UCS on a 9-point Likert scale. The CS� and the CS� were
rated three times (for clarification, the word block will refer to the
time point of measurement): (1) preacquisition, (2) postacquisi-
tion, and (3) postextinction. Statistical analyses were performed by
analysis of variance (ANOVA) in a 2 (stimulus: CS� vs. CS�) �
3 (block: preacquisition vs. postacquisition vs. postextinction)
factorial design in the general linear model (Greenhouse-Geisser
corrected) as implemented in SPSS Statistics 19 (IBM company,
Armonk, NY). Appropriate post hoc t tests were conducted to
further analyze significant effects. Finally, we correlated differen-
tial evaluative conditioning ratings with individual DS scores
(corrected for multiple testing). Global UCS ratings were mea-
sured after the extinction procedure only and are presented else-
where (Klucken, Schweckendiek et al., 2012).

Skin Conductance Responses

SCRs were sampled simultaneously with MR scans using Ag/
AgCl electrodes filled with isotonic (0.05 M NaCl) electrolyte
medium, placed hypothenar at the nondominant (left) hand. SCRs
were defined in two analysis windows: the maximum response
within the time window 1�5 s after each CS onset was counted as
the first interval response (FIR), the time windows within 5�9 s as
the second interval response (SIR). We investigated the first
and the second interval response because both responses might be
sensitive to reflect conditioned responses (e.g., Prokasy & Ebel,
1967; Knight, Waters, & Bandettini, 2009) and are associated with
different functions (FIR to orienting reactions and SIR to antici-
pation; Knight et al., 2009; Tabber et al., 2011). A 100Hz low-pass
filter was applied to the SCR data. The response amplitudes were
computed as the differences between the starting point of a re-
sponse and the local maximum (both defined by the points of
inflection). A logarithmic transformation [ln(1 � SCR)] was con-
ducted. Statistical analyses were performed via ANOVA in a 2
(stimulus: CS� vs. CS�) � 5 (block: two trials in each block)
design followed by post hoc tests in SPSS 19 (IBM company,
Armonk, NY). Finally, DS scores were correlated with differential
SCRs. Two subjects had to be excluded from SCR analyses be-
cause they did not show any SCRs (all responses � .05 �s),
leaving 18 participants for the SCRs analysis. In addition, SCRs
were correlated with individual DS scores (corrected for multiple
testing).

MRI

Functional and anatomical images were acquired with a 1.5
Tesla whole-body tomograph (Siemens Symphony with a quantum
gradient system) with a standard head coil. Structural image ac-
quisition consisted of 160 T1-weighted sagittal images (MPRage,
1 mm slice thickness). For functional images, a total of 268 images
were registered using a T2�-weighted gradient echo-planar imag-
ing (EPI) sequence with 25 slices covering the whole brain (slice
thickness � 5 mm; 1 mm gap; descending slice procedure; TR �
2.5 s; TE � 55 ms; flip angle � 90°; field of view 192 � 192 mm;
matrix size � 64 � 64). Data were analyzed using Statistical
Parametric Mapping (SPM8, Wellcome Department of Cognitive

Neurology, London UK) implemented in MATLAB 7.5 (Math-
works Inc., Sherbourn, MA). Standard preprocessing steps were
used as described previously (Klucken, Schweckendiek et al.,
2012; Klucken, Alexander et al, 2012).

The experimental conditions were CS�, CS�, UCS, non-UCS
(defined as the time point after CS�/CS�), and the distractor task.
Following a worthwhile reviewer’s comment, the conditions were
divided into two halves (early and late half, with the same number
of trials). The six movement parameters of the rigid body trans-
formation obtained by the realignment procedure were introduced
as covariates in the model. Regressors were convolved with the
canonical hemodynamic response function in the general linear
model. The voxel-based time series was filtered with a high-pass
filter (time constant � 128 s).

On the first level of analysis, the following contrasts were
analyzed for each subject: CS� � CS� and CS� � CS�, as well
as early half versus late half. Scores of these contrasts were
calculated for each subject and introduced as dependent variables
in the group analyses. In the group analyses, one-sample t tests
(e.g., CS� � CS�; CS� � CS�) were conducted to test for
significant differences. Further, regression analyses with individ-
ual DS scores were conducted. Whole-brain analyses were con-
ducted using a family-wise-error (FWE) -corrected alpha level of
� � .05 with a minimum size of 5 voxels. Regions of interest
(ROI) analyses were performed using the small volume correction
in SPM8. For ROI effects, the significance level was set to a
corrected alpha level of �.05 (FWE) with a minimum cluster size
of k � 5 voxel. Insula, amygdala, hippocampus, and vmPFC were
defined as ROI. All masks except the vmPFC mask were taken
from the Harvard-Oxford Cortical and Subcortical Structural At-
lases provided by the Harvard Center for Morphometric Analysis
and from the Human Brain Project Repository database based on
the BrainMap database (Fox & Lancaster, 1994; Nielsen & Han-
sen, 2002). Because no mask for the vmPFC exists in this atlas, an
appropriate mask was designed using the software program
MARINA (Walter et al., 2003). In addition, DS were correlated
with the contrasts using multiple regression analysis in SPM8.

Results

Evaluative Conditioning

ANOVA revealed significant main effects of stimulus (F(1,19) �
5.15; p � .05) and block (F(2,18) � 4.10; p � .05) as well as a
significant stimulus � block interaction effect (F(2,18) � 7.27; p �
.01) for valence ratings. Regarding the arousal ratings, a significant
stimulus � block interaction effect (F(2,18) � 4.14; p � .05) was
observed. Follow-up t tests showed that the CS� did not differ
from the CS� prior to the experiment (p � .29) but was rated as
significantly more aversive and more arousing after conditioning
and also after the extinction block (p � .05; see Figure 1). No
correlations with DS were found.

Skin Conductance Responses

During the conditioning phase, we found significantly enhanced
conditioned responses to the CS� as compared to the CS� (see
Klucken, Schweckendiek et al., 2012). Regarding the extinction
phase, no main effect of stimulus (F(1,17) � 1.04; p � .05) or block
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(F(4,13) � 0.97; p � .05) was found. We observed a stimulus �
block interaction effect (F(4,13) � 3.43; p � .05) in the FIR (see
Figure 2). Contrary to the evaluative ratings, post hoc t tests
showed significantly increased activation to the CS� as compared
to the CS� in the last block (p � .013), which is only a trend when
correcting for multiple comparisons (but not in all preceding trials;
all p � .20). Regarding the SIR, ANOVA did not show significant
main effects of stimulus (F(1,17) � 3.48; p � .05) or block (F(4,13) �

0.894; p � .05), nor a stimulus � block interaction effect (F(4,14) �
0.68; p � .05). No correlation of differential SCRs with DS was
found.

Neuronal Activation

Regarding the hemodynamic responses during the conditioning
phase, strong CS� � CS� differences were found in subcortical
and cortical areas (e.g., insula, occipital cortex, see Klucken,
Schweckendiek et al., 2012). In the extinction phase, whole-brain
and ROI analyses revealed no significant differences in the con-
trast CS� � CS�. Regarding the contrast CS� � CS�, we
observed significant hemodynamic responses in the left amygdala
(MNI-coordinates: x � �15; y � �7; z � �14; cluster size � 57
voxels; Zmax � 3.05; p � .032; FWE-corrected; see Figure 3). In
addition, we found a marginally significant correlation between
high DS scores and low hemodynamic responses in the left vmPFC
in the contrast CS� � CS� (MNI-coordinates: x � �6; y � 38;
z � �26; cluster size � 165 voxels; Zmax � 3.37; p � .059;
FWE-corrected). No correlation with SCRs was observed (FIR as
well as SIR). In addition, we analyzed the early versus the late half
of the extinction learning phase (early [CS� vs. CS�]–late [CS�
vs. CS�] and vice versa) to gain further information about extinc-
tion learning and analyzed each half separately. It is interesting
that we found the strongest amygdala activity in the first half of the
experiment (p � .024). However, regarding the late phase,
amygdala activation seemed slowly to shift to the CS� over time,
which was not significant as well as the comparison of both halves
(p � .17).

Discussion

The aim of this study was to investigate different response
systems in disgust extinction and the association of disgust extinc-
tion with disgust sensitivity. To our best knowledge, this is the
first study exploring disgust extinction learning concurrently in
three different response systems (SCRs, brain activity, and
evaluative conditioning). As the main result, we found a disso-
ciation of the different response systems during extinction
learning: While the CS� was rated as significantly more unpleas-
ant than the CS�, SCRs and hemodynamic responses exhibited
increased responses to the CS�. A trend was found between high
DS scores and decreased hemodynamic responses in the contrast
CS� � CS� during extinction learning in the vmPFC.

Figure 1. Stimulus � block interaction effect in evaluative conditioning.
The CS� significantly differs from the CS� after the conditioning and
after the extinction, but not prior to the experiment. Error bars represent
standard errors of the mean. � p � .05.

Figure 2. Skin conductance responses to the CS� and to the CS� during
the extinction process. Each block contains two trials. The CS� signifi-
cantly differs from the CS� in the last block. Error bars represent standard
errors of the mean. � p � .05.

Figure 3. Neuronal activation in the left amygdala in the extinction phase
for the contrast CS� � CS�. For illustration purposes, data are thresh-
olded and masked with t � 2.0.
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Regarding the dissociation between the different response sys-
tems, the present results are in line with recent fear extinction
studies that report stable CS�/CS� differences in subjective rat-
ings, while no CS�/CS� differences were found in other response
systems during extinction (Blechert et al., 2008; Dwyer et al.,
2007; Vansteenwegen et al., 2006). For instance, Blechert et al.
(2008) observed no differences in SCRs, while CS�/CS� differ-
ences in evaluative conditioning remained stable even after extinc-
tion. These findings in evaluative conditioning have been observed
across different emotions, healthy subjects, psychiatric patients,
and even across different stimulus modalities as well as in different
paradigms and methods (Hofmann, De Houwer, Perugini, Baey-
ens, & Crombez, 2010; Mason & Richardson, 2010; Michael,
Blechert, Vriends, Margraf, & Wilhelm, 2007; Olatunji, 2006;
Olatunji et al., 2007, 2009; Stevenson, Boakes, & Wilson, 2000).

It is interesting to note that we found slightly increased SCRs to
the CS� compared to the CS� in the last part of the experiment,
while most studies did not find any differences between CS� and
CS� in SCRs (Milad et al., 2010; Milad, Wright et al., 2007;
Tabbert et al., 2010). This finding is rather puzzling considering
the findings in the study by Olatunji et al. (2007), who reported
higher SCRs to the CS� compared to the CS� at the end of
disgust extinction. One possible explanation for these differences
could be that Olatunji et al. (2007) used highly negative pictures
(e.g., of mutilations), which may evoke more arousal and might
possess higher negative valence than the pictures used in the
present study (e.g., rotten food). Therefore, it is possible that the
high levels of arousal in response to the UCS, as in the study by
Olatunji et al. (2007), may have caused increased SCRs to the
CS� as compared to the CS� in extinction learning or could also
reflect a recall of the conditioning memory. In addition, substantial
differences in the choice of CS (e.g., using pictures as CS vs. using
neutral words as CS) and differences in the experimental protocol
(duration, conditioning, and extinction trials, etc.) could provide
explanations for some of these contrary results. However, due to
the fact that disgust extinction has been investigated only very
rarely, further studies are needed to determine the course of SCRs
in more detail.

Regarding BOLD responses, significant effects were observed
in the left amygdala in the contrast CS� � CS�. However,
although most studies found increased amygdala activation to the
CS� in extinction learning (for in-depth reviews see Quirk &
Mueller, 2008; Milad & Quirk, 2012), no differences or even
greater responses to the CS� as compared to the CS� have also
been found in some extinction studies (Phelps et al., 2004; Merz et
al., 2012). For instance, Phelps and colleagues (2004) reported
greater amygdala and vmPFC activation to the CS� as compared
to the CS� in extinction learning. Several studies showed that
different parts of the amygdala are also associated with safety
learning (Pollak et al., 2010; Rogan, Leon, Perez, & Kandel,
2005). Thus, the amygdala activation observed in the present study
might therefore reflect safety learning. Another (post hoc) inter-
pretation for the amygdala findings is the possibility that subjects
may have expected the CS� to be the new “danger signal,” that is,
a reversal of contingencies (Schiller & Delgado, 2010; Schiller et
al., 2008). Therefore, subjects may have been uncertain about the
new contingencies, which could have provoked the amygdala
activity (Schiller et al., 2008; Whalen, 2007). Because additional
data is needed to support either one of the different hypotheses, it

is not clear whether the present finding reflects uncertainty or
extinction learning. However, it should be noted, that such short
extinction phase may also reflect a potential recall of CRs. Thus,
these interpretations remain speculative and should be treated with
caution.

The negative correlation of DS with activation within the
vmPFC extends the understanding of DS. Since vmPFC activity is
regarded as a correlate of emotion regulation and extinction (Del-
gado, Nearing, LeDoux, & Phelps, 2008; Goldin et al., 2008;
Hermann et al., 2007, 2009), our correlational finding nicely fits to
the assumption that high disgust-prone subjects have more diffi-
culties in coping with disgust-related processes. The altered
vmPFC activation might reflect an increased effort to cope and
regulate emotions. Nevertheless, this conclusion should be noted
as preliminary because it was not the aim of the study to investi-
gate emotion regulation.

Surprisingly, in contrast to studies investigating the neuronal
correlates of disgust experiences and disgust learning (Calder et
al., 2007; Klucken, Schweckendiek et al., 2012; Kim & Jung,
2006; Sehlmeyer et al., 2009), we did not find insula activation in
the extinction phase. For instance, Kim & Jung (2006) assumed
that the insula is especially involved in the storage of a probably
long-term CS memory. Since we investigated extinction learning
without any consolidation between the acquisition and the extinc-
tion phase, the storage process may not have been finished yet.

In sum, the present findings extend the view of disgust extinc-
tion learning: First, evaluative conditioning showed significant
differences between CS� and CS� even after extinction leaning
(Mason & Richardson, 2010; Olatunji et al., 2007). Second, we
found increased amygdala responses to the CS�, which could be
interpreted as a safety learning signal. Finally, we found a mar-
ginally significant negative correlation between DS scores and
vmPFC responses, which could be interpreted as a neuronal cor-
relate for the proposed association of DS and dysfunctional emo-
tion regulation.
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