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CHAPTER 7

Stress and Emotional Learning in 
Humans: Evidence for Sex Differences
Christian J. Merz, Oliver T. Wolf
Ruhr-University Bochum, Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Bochum, Germany

1  INTRODUCTION

Stress has been conceptually defined as a response to a threat to homeostasis. In humans, 
psychosocial stressors are especially powerful. A threat to the social self (social evalua-
tive threat) in combination with uncontrollability of the situation is especially potent 
in prompting stress (Dickerson and Kemeny, 2004). In the laboratory, stress can be in-
duced by means of public speaking paradigms such as the Trier Social Stress Test (TSST; 
Kirschbaum et al., 1993), or by painful manipulations (immersion of the hand into ice 
water) such as the cold pressor test (CPT) or the later-developed socially evaluated CPT 
(Schwabe et al., 2008).

It has been suggested that women and men differ in how they respond to stress-
ors, based upon endocrinological and behavioral responses (Taylor et al., 2000). These 
differences might translate into vulnerabilities for distinct stress-associated psychiatric 
disorders. Compared with men, women have, for example, a higher risk for major de-
pression, posttraumatic stress disorder (PTSD), and several anxiety disorders, but a lower 
prevalence in schizophrenia, substance abuse, and autism (Cover et al., 2014).

When discussing possible sex differences in how stressors affect learning and memo-
ry, two possible scenarios should be considered. On the one hand, sex differences might 
occur because the two sexes differ in their endocrinological response to a stressor. Alter-
natively, or additionally, sex differences might reflect a different responsivity of the brain 
to the same neuroendocrine stress signal (e.g., glucocorticoids).

Endocrinologically, both sexes generally respond to stressors with an activation of the 
two major stress systems, the sympathetic nervous system (SNS) and the hypothalamic–
pituitary–adrenocortical (HPA) axis (see Figure  7.1). The SNS initiates a rapid first 
stress response wave, which is dominated by the effects of (nor)adrenaline released from 
the adrenal medulla. Increases in heart rate and breathing frequency prepare the body 
for action. This initial response has been conceptualized as the fight or flight response 
(Cannon, 1932).

Slightly delayed, at least with respect to its adrenal end product, the HPA axis also 
responds. Corticotropin-releasing hormone (CRH), released from the hypothalamus, 
works to stimulate the secretion of adrenocorticotropin (ACTH) in conjunction with 
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arginine vasopressin (Joëls and Baram, 2009). ACTH in turn stimulates the synthesis and 
release of glucocorticoids (GCs; mainly cortisol in humans) from the adrenal cortex. The 
neuroendocrine stress response is regulated by circulating GCs via negative feedback 
mechanisms targeting the pituitary, the hypothalamus, the hippocampus, and prefrontal 
areas (Ulrich-Lai and Herman, 2009). This negative feedback loop is essential for the 
regulation of both the HPA axis and the stress response (De Kloet et al., 2005). GCs 
mediate their effects by binding to two subtypes of intracellular receptors, the miner-
alocorticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptors 
differ in their affinity and distribution within the brain: while MRs are mainly located in 
the hippocampus, GRs are expressed throughout the brain, for example, in the prefrontal 
cortex. In addition, membrane-bound GRs and MRs have also been identified (Joëls 
et al., 2008; Roozendaal et al., 2010). Due to their prominence throughout the brain, 
corticoid receptors modulate several cognitive processes, including memory. While most 

Figure 7.1  Stress activates two lines of defense mechanisms: the rapidly acting sympathetic nervous 
system (SNS) and the slower hypothalamic–pituitary–adrenocortical (HPA) axis. Activation of the hy-
pothalamus stimulates the SNS to secrete (nor)adrenaline from the adrenal medulla. The hypothala-
mus also releases CRH, which stimulates the secretion of adrenocorticotropin (ACTH) from the anterior 
pituitary gland into the blood stream. ACTH stimulates the adrenal cortex to release glucocorticoids 
(GCs), which can easily pass the blood–brain barrier and modulate brain functions involved in learning 
and memory. GCs exert negative feedback effects on the hypothalamus and the pituitary gland, lead-
ing to reduced activity of the HPA axis.
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of the effects associated with GCs – especially when related to stress – have been attrib-
uted to GR, the importance of MRs has also been emphasized (Joëls et al., 2008). The 
newly discovered membrane bound MR in particular might be responsible for some of 
the rapid effects of acute stress on memory discussed in the present chapter.

The hypothalamic–pituitary–gonadal (HPG) axis controls the release of the gonadal 
hormones estradiol, progesterone, and testosterone from the ovaries and testes. Regard-
ing the course of the menstrual cycle, estradiol concentrations peak in the middle of the 
cycle around ovulation, while progesterone concentrations increase in the second half of 
the cycle (in the luteal phase; see Figure 7.2). The HPG axis is influenced by acute and, 
even more pronounced, chronic stress. In turn, it also influences the HPA axis.

It is well established that the HPA axis response is modulated by gonadal steroids 
(Kajantie and Phillips, 2006; Kudielka and Kirschbaum, 2005; Taylor et al., 2000). Ex-
perimental studies in humans using psychosocial laboratory stressors such as the TSST 
have often observed that men show a stronger HPA axis response to the stressor than 
women (Kajantie and Phillips, 2006; Kudielka and Kirschbaum, 2005). However, this 

Figure 7.2  (a) The hypothalamus controls the release of gonadal hormones via the hypothalamic–
pituitary–gonadal (HPG) axis. The hypothalamus secretes gonadotropin-releasing hormone (GnRH), 
which stimulates the secretion of follicle stimulating hormone (FSH) and luteinizing hormone (LH) 
from the anterior pituitary gland into the blood stream. The gonads secrete gonadal hormones, which 
exert negative feedback effects on the hypothalamus and the pituitary gland. (b) In women, secretion 
of hormones from the HPG axis is subject to changes over the menstrual cycle. In the follicular phase, 
low levels of the gonadal hormone estradiol are present, which rise midcycle to initiate ovulation. After 
that, the following luteal phase is characterized by higher estradiol as well as progesterone concentra-
tions. The pituitary hormones LH and FSH show peak concentrations during ovulation.
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might depend on the specific paradigm used (Stroud et  al., 2002). No strong overall 
influence of sex on the cortisol response to laboratory stressors could be detected in a 
large meta-analysis, which, however, was not able to investigate a possible influence of 
menstrual cycle and hormonal contraceptives (Dickerson and Kemeny, 2004).

In women, fluctuations of gonadal hormones during the menstrual cycle seem to 
modulate the HPA axis response. A more pronounced HPA axis response to stressors 
is observed during the luteal phase (Kajantie and Phillips, 2006; Kudielka and Kirsch-
baum, 2005), characterized by elevated progesterone and estradiol levels. The situation 
in humans is further complicated by the fact that hormonal contraceptives appear to 
dampen the free (unbound, i.e., biologically active) cortisol stress response by increasing 
cortisol-binding globulin (Kirschbaum et al., 1999; Rohleder et al., 2003). The typical, 
blunted salivary free cortisol response of women using hormonal contraceptives is dis-
played in Figure 7.3.

In conclusion, gonadal steroids impact HPA axis reactivity in humans as a result of 
the complex interaction between the HPA and HPG axes. Furthermore, hormones re-
leased by both axes can influence the brain and cognition. However, many experimental 
studies in humans have been conducted exclusively with men. Moreover, in studies with 

Figure 7.3  Exposure to a standardized psychosocial stress protocol (Trier Social Stress Test, TSST) leads 
to increases in free cortisol concentrations over time. Women in the luteal phase of the menstrual cycle 
exhibit higher cortisol increases compared with women taking oral contraceptives (OCs) who typically 
show blunted cortisol responses in saliva. (Reprinted from Rohleder et al. (2003). With permission from 
Elsevier.)
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women, information about menstrual cycle phase and/or hormonal contraception is 
often not taken into account in the experimental design (Beckner et al., 2006; Smeets 
et al., 2006). Similarly, most studies in rodents focus exclusively on males when examin-
ing stress effects on memory.

In the present chapter, we will review the literature concerning the impact of stress 
hormones on learning and memory processes in humans. Particularly, we will focus on 
episodic memory and fear conditioning, two forms of long-term memory, for which 
some data are available on the influence of gonadal hormones and the intake of hor-
monal contraceptives.

2  EPISODIC MEMORY

Episodic memory relies heavily on intact medial temporal lobes, including the most 
recognized structure for memory: the hippocampus (Nadel and Moscovitch, 1997). Per-
sonal individual events of the past, such as the party on your 18th birthday or the day 
of your driving test, are stored in your episodic memory. In general, three stages of  
memory processing can be identified (Tulving,  1983): (1) encoding: transformation  
of incoming information into a memory representation, (2) consolidation: modifica-
tion and stabilization of this representation, and (3) retrieval: reactivation of the stored 
memory trace.

Stress and stress hormones exert numerous effects on these memory stages in hu-
mans. Typically, stress impairs memory retrieval, but enhances consolidation processes. 
The effects on encoding seem to depend on various factors. Emotionally arousing stim-
uli in particular are affected by stress, which is explained by an interaction between GCs 
and an activation of the SNS affecting the amygdala and the hippocampus (Roozendaal 
et  al., 2009). In the following sections, we will delineate these different effects. After 
brief introductions to the overall picture in each memory stage, we will concentrate on 
experimental studies focusing on sex differences in episodic memory after exposure to 
stress or administration of cortisol.

2.1  Encoding
Generally, findings on pre-encoding stress have revealed enhancing, impairing, and ab-
sent effects of stress. Several ideas have been proposed to explain these results. The first 
refers to the timing of the stressor relative to the learning session. Exposure to stress a 
relatively long time before encoding exerts detrimental effects on memory, whereas 
stress taking place directly before or as part of the learning session facilitates memo-
ry encoding (for reviews see Joëls, 2006; Schwabe and Wolf, 2013). Stress within the 
learning context situation helps the individual to better retrieve this memory at a later 
point in time. The second idea is time of day: a meta-analysis found impaired memory 
when acute cortisol administration was set before encoding in the morning, but the 
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reversed effect was found when cortisol administration took place in the afternoon 
(Het et al., 2005). Since cortisol concentrations are subject to a circadian rhythm, with 
high levels in the morning declining over the course of the day, adding cortisol to these 
already relatively high endogenous concentrations in the morning seems to have nega-
tive effects on memory. The third idea concerns emotionality of the stimulus material: 
pre-encoding stress or cortisol application leads to a superior encoding and/or consoli-
dation of emotionally arousing material (Buchanan and Lovallo, 2001; Kuhlmann and 
Wolf, 2006; Payne et al., 2007; Rimmele et al., 2003; Wolf, 2012), whereas nonarous-
ing information is stored less efficiently (Kuhlmann and Wolf, 2006; Payne et al., 2007; 
Rimmele et al., 2003; Smeets et al., 2006). Thus, a stressor can potentiate the impact of 
stimulus emotionality on long-term memory.

Now let us turn to those studies reporting sex differences and the impact of circulat-
ing gonadal hormones. Cornelisse et al. (2011) investigated men and women encoding 
neutral and emotional pictures after stress induction using the TSST. One week later, 
men in the stress condition showed better memory for emotional pictures compared 
with men in the control condition. This effect was not found for neutral pictures or in 
the female group. The latter fact is interesting – why should women not display a stress 
effect? One explanation could be that more than two-thirds of the female participants 
used hormonal contraceptives, which are associated with a substantially blunted free 
cortisol stress response (see “Introduction”). In both sexes, the cortisol stress response was 
correlated with the enhanced emotional memory recognition suggesting that indeed 
differences in cortisol concentrations underlie the observed sex differences in this study 
rather than different effects of cortisol on the brain.

In general, pooling groups of women with and without hormonal contraceptive 
usage into one group might cancel out potential effects of circulating (endogenous and 
exogenous) gonadal hormones. Indeed, a separation of women into different groups of 
free-cycling women and women taking hormonal contraceptives is needed to allow for 
a more detailed understanding of the influence of circulating gonadal hormones. Unfor-
tunately, only few studies have included a closer description of their female sample up to 
now, so that the picture remains inconclusive, at least at the moment.

One experiment in men and women taking oral contraceptives was able to show 
that cold pressor stress before the learning session increased memory in men and women 
taking oral contraceptives (Schwabe et  al., 2008), suggesting that, regarding cognitive 
performance, both groups might respond to stress in a similar fashion. However, this pat-
tern was not confirmed in a study clearly differentiating women according to the stage 
of their menstrual cycle (follicular and luteal phase) and the intake of oral contraceptives 
(Espin et al., 2013). Under control conditions, all of these female groups remembered 
more neutral words compared with men. Exposure to stress before encoding and di-
rectly following retrieval disrupted this sex difference, which could be traced back to an 
enhanced performance after stress in men, but no change after stress in the three groups 
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of women. However, stress induction only increased cortisol concentrations in women 
in the luteal phase (limiting the conclusions to be drawn from this study). In the same 
group of women, a correlation was found between the cortisol increase after stress and 
poorer performance. This finding contrasts a previous study showing that stress-induced 
cortisol increases were negatively correlated with memory performance in men, but not 
in women tested in the luteal phase (Wolf et al., 2001).

In conclusion, many studies investigating stress effects on encoding have investigated 
men only (Nater et  al.,  2007; Quaedflieg et  al.,  2013; Tops et  al.,  2003) or men and 
women but without reporting details regarding the female sample and also without 
explicitly testing for sex differences (Rimmele et al., 2003; Zoladz et al., 2011). Only 
a small number of experiments have outlined details on menstrual cycle or usage of 
hormonal contraceptives in women and at the same time looked at potential group dif-
ferences, but these studies do not yield a consistent picture. A tentative conclusion based 
on the available data is that the effects of stress on encoding are more robust in men 
compared with women.

2.2  Consolidation
Experimental elevation of stress hormones after a learning episode typically leads to 
enhanced memory for this information, especially for emotionally arousing material 
(Wolf, 2009). This effect can be observed when female and male participants are exposed 
to stress (Beckner et al., 2006; Cahill et al., 2003; Preuss and Wolf, 2009; Smeets et al., 
2006). From an evolutionary point of view, the facilitation of memory consolidation 
after a stressful event clearly serves adaptation: better memory for a dangerous situation 
helps individuals to initiate adequate survival mechanisms when later encountering a 
comparable threatening situation (De Kloet et al., 2005; McEwen, 1998).

Looking closer at potential underlying sex differences, the positive effect of posten-
coding stress on later familiarity-based recognition has been reported by one research 
group to occur in men, but not in women (McCullough and Yonelinas, 2013; Yonelinas 
et al., 2011). It is worth mentioning that men and women exhibited similar cortisol in-
creases in response to stress in both of the studies mentioned, so an explanation for the 
above-mentioned discrepancy cannot be derived from differing cortisol responses. Thus, 
differences in the sensitivity to stress hormones appear to be the most likely explanation.

In addition, another study found an inverted U relationship between a stress-induced 
cortisol increase and memory for a neutral story in men (Andreano and Cahill, 2006), 
while no relationship was evident in women. Felmingham et al. (2012b) found a similar 
enhancing effect of postlearning stress for nonarousing images in men. In free-cycling 
women, on the other hand, the increase in stress hormones after encoding was positively 
related to later memory recall of emotionally arousing images. Again, cortisol responses to 
the stressor were comparable in men and women. A similar study revealed that stress en-
hances memory consolidation for emotionally arousing images when women are tested 
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in the midluteal phase, in which estradiol and progesterone concentrations are high, but 
not in women tested in other phases of the menstrual cycle, when progesterone is low 
(Felmingham et al., 2012a). In line with these results, a positive relationship between cor-
tisol concentrations after encoding and an enhanced memory performance was only ob-
served in women tested in the midluteal phase (Andreano et al., 2008; see Figure 7.4), but 
not in the early or late follicular phase. Thus, progesterone might represent an important 
player in modulating stress effects on memory consolidation in women. Of course, it can-
not be ruled out that the effects observed in the midluteal phase are not solely due to pro-
gesterone increases in this phase. Relatively high estradiol levels might exert their effects 
only in the presence of high progesterone concentrations; both are present in the mid-
luteal phase. Pharmacological interventions directly manipulating progesterone and/or  

Figure 7.4  Association between salivary cortisol concentrations after stress induction (postlearning 
stress) and memory retrieval 1 week later in women in the early follicular, late follicular, and midluteal 
phases. A significant positive relationship occurred in the midluteal phase, whereas a trend toward 
the negative direction was observed in the early follicular phase. (Slightly modified from Andreano et al. 
(2008). With permission from Elsevier.)
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estradiol levels would be desirable in order to understand the exact underlying gonadal 
hormone-related mechanisms.

Apart from differences due to gonadal hormones, the impact of oral contraceptives in 
stress effects on consolidation processes has also been investigated recently. In a study by 
Nielsen et al. (2013), free-cycling women and women taking hormonal contraceptives 
viewed neutral and emotionally arousing images before being exposed to cold pres-
sor stress or a control procedure. The stressor was more effective in increasing cortisol 
concentrations in free-cycling women than in women taking hormonal contraceptives, 
who typically display relatively blunted free cortisol responses (Kirschbaum et al., 1999; 
Rohleder et  al.,  2003). Stress hormones did not facilitate memory consolidation of 
emotional pictures in any free-cycling women, but recall of nonarousing pictures 1 
week later was heightened in those free-cycling women responding to the stressor with 
increased SNS and HPA axis activation. Women taking hormonal contraceptives tended 
to retrieve more emotionally arousing images when the SNS, but not the HPA axis, was 
activated. This rather complex pattern at least suggests that, in addition to the particular 
menstrual cycle phase, the interplay between the SNS and the HPA axis needs to be 
taken into account when trying to understand stress effects on memory consolidation 
in women. The second study on this issue once again confirmed that stress leads to en-
hanced memory consolidation for emotional material in free-cycling women (Nielsen 
et al., 2014). However, women taking hormonal contraceptives were not influenced in 
their memory performance by stress exposure at all. It seems that consolidation processes 
are subject to modulatory influences of stress and gonadal hormones in complex ways. 
This issue certainly needs to be investigated in future studies to gain greater insight into 
how memory is differentially consolidated in men and women under stressful condi-
tions, which will also contribute to the understanding of factors leading to psychopa-
thology after confrontation with a traumatic situation.

Taken together, stress hormones enhance memory consolidation, especially for emo-
tionally arousing material. With regard to the potential influence of gonadal hormones, 
the limited literature on this issue assumes an enhancing effect of stress on consolida-
tion in women with higher progesterone concentrations as present in the midluteal 
phase. In contrast, postencoding stress might cause a detrimental influence on memory 
performance in women in the late follicular phase. These presumably opposing effects 
could explain why sometimes no impact of stress on memory consolidation has been 
reported in women: the negative and positive effects of postlearning stress across the 
cycle may have cancelled each other out. These opposing influences occurring in dif-
ferent stages of the menstrual cycle must be further examined since they rely on stud-
ies with rather small sample sizes. In addition, the impact of hormonal contraceptives 
needs to be investigated in future studies; first findings indicate a differential effect of 
stress on memory consolidation in free-cycling women and in women taking hormonal 
contraceptives.
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2.3  Retrieval
Generally, memory retrieval is reduced when persons are stressed (Kuhlmann et al., 2005b; 
Merz et al., 2010b; Smeets et al., 2006; Tollenaar et al., 2008) or when cortisol is adminis-
tered prior to retrieval (De Quervain et al., 2000; see Het et al., 2005 for a meta-analysis). 
As in consolidation, emotionally arousing material is particularly affected (Wolf, 2009). 
From an evolutionary point of view, this stress-induced retrieval deficit might serve an 
adaptive purpose (Roozendaal, 2002): retrieval processes for prior information interfere 
with the encoding of new information (Allan and Allen, 2005); thus, a temporary reduc-
tion in retrieval allows for appropriate and efficient encoding and consolidation of the 
stressful and potentially threatening new event itself.

What do we know about the potential impact of sex differences and gonadal hor-
mones on stress effects on memory retrieval? When men and free-cycling women across 
the whole menstrual cycle are studied together, there does not seem to be much of a 
difference in the overall picture (Rohleder et al., 2009; Schönfeld et al., 2014; Schwabe 
and Wolf, 2009; Smeets, 2011; Young et al., 2011). When women are tested in the fol-
licular phase, the finding of cortisol-induced memory reduction of emotional material 
stays the same (Kuhlmann et al., 2005a). One study demonstrated that cortisol reduces 
the retrieval of emotional and neutral information in women investigated in the luteal 
phase and during menses but not in women taking oral contraceptives (Kuhlmann and 
Wolf, 2005; see Figure 7.5). These data have been interpreted to support the notion that 

Figure 7.5  Effects of an oral administration of 30  mg cortisol on delayed free retrieval of words in 
women tested in the luteal phase, during menses, and in women taking oral contraceptives (OC). Cor-
tisol significantly reduced memory retrieval in women in the luteal phase and during menses, but not 
in OC women. *p < 0.05. (Reprinted from Kuhlmann and Wolf (2005). With kind permission from Springer 
Science and Business Media.)



Stress and Emotional Learning in Humans: Evidence for Sex Differences 159

women using oral contraceptives exhibit a slightly reduced central GC sensitivity to 
cortisol. Oral contraceptives contain exogenous gonadal hormones, which could either 
directly or indirectly affect the sensitivity of the brain to GCs. This issue needs to be 
tackled in future work.

Apart from cortisol administration, exposure to stress also led to an interesting result 
in one study challenging some of the previously made conclusions. This study failed to 
observe the adverse effect of stress on memory retrieval in a group of women tested in 
the luteal phase (Schoofs and Wolf, 2009). In the luteal phase, stress-induced increases 
in free cortisol concentrations are heightened (Kirschbaum et  al.,  1999), while HPA 
feedback and peripheral GC sensitivity are decreased (Altemus et al., 1997; Rohleder 
et al., 2001). In light of results obtained by Schoofs and Wolf (2009), it could be specu-
lated whether these reductions in peripheral GC sensitivity also transfer to central GC 
sensitivity (Rohleder et al., 2009). The absent effects of stress on memory retrieval in 
women investigated in the luteal phase can be interpreted as a reduced central sensitivity 
to stress-induced cortisol effects (Schoofs and Wolf, 2009). Cortisol administration in-
hibited memory retrieval in the luteal phase (Kuhlmann and Wolf, 2005), whereas stress 
did not (Schoofs and Wolf, 2009). Thus, GC sensitivity in women in the luteal phase 
might be slightly reduced thereby abolishing effects on memory retrieval induced by 
stress-related cortisol increases while not affecting effects induced by supraphysiological 
cortisol elevations after pharmacological administration.

All in all, it has been found that stress is typically associated with poorer memory 
retrieval, especially for emotionally arousing information. A small number of studies sup-
port the idea that the menstrual cycle and the intake of contraceptives might modulate 
the observed findings. In one of these studies, cortisol administration did not influence 
retrieval performance in women taking oral contraceptives, while in the other women 
in the luteal phase were not affected in memory retrieval after stress induction. Of 
course, these findings need to be replicated, but they emphasize the importance of pay-
ing attention to the modulatory impact of gonadal steroids on retrieval processes.

2.4  Interim conclusion on episodic memory
Taken together, we can conclude that stress differentially affects the three stages of epi-
sodic memory processing. Stress enhances the encoding of emotionally arousing material, 
whereas, at the same time, it might impair the encoding of nonarousing information. The 
timing of the stressor relative to the encoding is also critical for stress effects to occur. On 
the one hand, stress facilitates memory when applied shortly before or during learning, 
and on the other hand, it deteriorates memory when applied before encoding (e.g., at the 
peak of cortisol concentrations). Few studies have addressed the issue of possible sex dif-
ferences of pre-encoding stress. The usage of hormonal contraceptives and its associated 
blunted free cortisol stress response appears to cause weaker effects of stress on memory.

Stress enhances consolidation processes but typically reduces retrieval, particular-
ly retrieval of emotional material. Regarding consolidation, it has been suggested that  
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progesterone plays a critical role in the enhancing effects of stress; thus, women seem 
to benefit from postencoding stress especially when they are in the midluteal phase. At 
the same time, a different study reported that women in the luteal phase are not suscep-
tible to the impairing effects of psychosocial stress (but not cortisol administration) on 
memory retrieval. Thus, women in the luteal phase benefit from the positive effect of 
stress on consolidation, but also from not being affected by the stress-inhibiting effect on 
memory retrieval. In addition, the usage of hormonal contraceptives appears to weaken 
the effects of cortisol on memory retrieval.

All in all, the existing literature indicates that stress and cortisol administration lead 
to more variable and smaller effects on long-term memory in women compared with 
men. The use of hormonal contraceptives, as well as elevated progesterone levels during 
the luteal phase, are important mediators. Interestingly, there is little overall evidence 
for an enhanced sensitivity to stress or stress hormones in women when it comes to 
hippocampal-based episodic memory. In Chapter 8, we will proceed to fear condition-
ing, another form of long-term memory relying on amygdala activity.

3  FEAR CONDITIONING

During classical conditioning, individuals learn that a typically neutral stimulus is paired 
with an aversive or pleasant event (unconditioned stimulus, UCS), which leads to an 
unconditioned response (e.g., fear; Pavlov, 1927). As a result of a couple of pairings of 
both stimuli, the originally neutral stimulus alone can trigger parts of the unconditioned 
response and is now termed the conditioned stimulus (CS). In this section, only fear 
conditioning studies using aversive events as the UCS (such as an electrical stimulation) 
will be presented. Fear conditioning processes are assumed to play a major role in the 
development of anxiety disorders as well as PTSD (Graham and Milad, 2011; Mineka 
and Oehlberg, 2008).

After initial fear memory formation with repeated couplings of the CS with the 
UCS, recurrent presentations of the CS without the UCS result in fear extinction lead-
ing to the suppression of conditioned fear. The most effective psychotherapeutic strategy 
to treat anxiety disorders, namely exposure therapy, in which patients are confront-
ed with their phobic stimuli or situations, relies on fear extinction processes (Vervliet 
et al., 2013). But extinction training does not erase fear forever – fear is just temporarily 
not expressed. Individuals often experience a relapse of (pathological) fear, for example, 
after a change in context (renewal) (Bouton, 2004).

The amygdala is assumed to be the interspecies, core structure responsible for fear 
conditioning (LeDoux,  2000). In addition, the anterior cingulate cortex, the insula,  
the ventromedial prefrontal cortex, and the hippocampus constitute integral parts of the  
fear and extinction network (Mechias et al., 2010; Sehlmeyer et al., 2009). Intriguingly, 
patients with anxiety disorders or PTSD exhibit abnormalities in this fear circuitry 
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(Etkin and Wager, 2007; Graham and Milad, 2011). Because the prevalence of anxiety 
disorders and PTSD is substantially different in men and women (Cover et al., 2014), it 
is important to understand the neurobiological mechanisms of these sex differences in 
the underlying fear conditioning processes. Moreover, the impact of stress and stress hor-
mones on the fear and extinction network as a function of sex needs to be elucidated. 
Generally, sex hormones seem to influence cortisol effects on fear learning. Additionally, 
high cortisol concentrations also inhibit fear retrieval. First, we will present results on the 
sex-dependent impact of stress hormones on fear memory formation and consolidation, 
and second, on extinction learning and the return of fear.

3.1  Fear memory formation and consolidation
Controversial findings exist regarding the question of whether and how stress and stress 
hormones affect fear learning; some studies have reported increased, others have reported 
reduced, conditioned fear memory after exposure to stress. Again, the timing of the stress 
exposure appears to be important. For example, exposure to stress rapidly leads to SNS ac-
tivity and the accompanying release of (nor)adrenaline, which seems to be associated with 
increased conditioned fear (Antov et al., 2013). In line with these results, enhanced nor-
adrenergic stimulation by the a2-adrenoreceptor antagonist, yohimbine, strengthens sub-
sequent fear memory as shown by slower subsequent extinction learning, heightened fear 
retrieval after reinstatement, and augmented fear reacquisition (Soeter and Kindt, 2011).

In contrast to the influence of the rapidly developing SNS response, the slower corti-
sol response to a stressor appears to be negatively correlated with fear acquisition (Antov 
et al., 2013). This is consistent with findings showing that the cortisol response 30 min 
after stress exposure is negatively associated with amygdala activation (Oei et al., 2012). 
However, the above-mentioned results were obtained in men only, and there is, in line 
with animal data on eye-blink and fear conditioning (Dalla and Shors,  2009), accu-
mulating evidence for significant sex differences in stress effects on fear conditioning. 
Exposure to stress 1 h before fear conditioning increased fear conditioned responses in 
men, but seemed to inhibit fear learning in women (Jackson et al., 2006). Correspond-
ingly, stress-induced cortisol elevations observed after fear conditioning strengthened 
fear memory consolidation in men, but not in women (Zorawski et al., 2005, 2006). 
Critically, information on the usage of oral contraceptives was not given in these stud-
ies. Nevertheless, the same effect was also seen when cortisol was administered after 
fear acquisition in men (Merz et al., 2014b). When fear learning takes place at a time 
when stress-induced cortisol concentrations are back to baseline, no differences be-
tween groups with differing gonadal hormone status occurred in fear acquisition and 
subsequent extinction (Antov and Stockhorst, 2014). However, on the next day, stress 
led to higher fear recovery in women tested in the follicular phase compared with men. 
Extinction memory was also reduced in women in the follicular phase compared with 
women investigated midcycle.
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In addition, pharmacological studies propose that GCs may further modulate fear 
learning and memory processes differently in men and women. Pharmacological el-
evations of cortisol diminish neuronal fear responses in men and free-cycling women 
(tested in the follicular and luteal phase), but heighten fear-related brain activity in 
women taking oral contraceptives (Merz et al., 2010a, 2012; Stark et al., 2006; Tabbert 
et al., 2010; see Figure 7.6). Importantly, psychosocial stress induction led to the same 
pattern of results: whereas stress attenuated conditioned brain activation in men, it in-
creased fear responses in women taking oral contraceptives, for example, in the amygdala 
(Merz et  al., 2013). These studies using functional neuroimaging discovered that GC 
administration and exposure to stress influenced the fear network sex hormone depend-
ently, affecting, among others, the amygdala and the hippocampus, critical for emo-
tional memory formation. In the case of the fear conditioning study using psychosocial 
stress induction (Merz et al., 2013), it needs to be mentioned that women taking oral 
contraceptives showed significantly lower increases in cortisol concentrations than men 
(Kirschbaum et al., 1999; Rohleder et al., 2003). Because the pattern of results after stress 

Figure 7.6  Sex hormone-dependent effect of the administration of 30 mg cortisol on fear memory for-
mation (contrast CS+ minus CS2) in the left anterior parahippocampal gyrus and the left hippocam-
pus. For illustration reasons, a threshold of F≥5.0 was applied to data (see color bar for exact F values), 
which were then displayed on the standard MNI brain template. In the bar graphs, mean contrast 
estimates to CS+ minus CS2 are given for men, women in the follicular (FO) phase, in the luteal (LU) 
phase, and women taking oral contraceptives (OC) separately for the cortisol and the placebo group 
in the respective peak voxel. In both brain regions, cortisol reduced the CS+/CS2 differentiation in 
men, FO, and LU women, but enhanced it in OC women. *p < 0.05; **p < 0.005 for the treatment × sex 
interaction. (Reprinted from Merz et al. (2012). With permission from Elsevier.)
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induction is similar to the pattern obtained after GC administration (leading to com-
parable supraphysiological cortisol concentrations in all sex hormone status groups), an 
underlying difference in GC sensitivity in women taking oral contraceptives compared 
with men does not seem very likely. Oral contraceptives contain ethinylestradiol, which 
binds to estrogen receptors, and a gestagenic component, which binds to progestin re-
ceptors. A higher estradiol and/or progesterone binding after continuous oral contra-
ceptive intake might lead to a subsequent downregulation and/or to a desensitization 
of these receptors in various brain structures such as the hippocampus. Stress or cortisol 
administration may abolish this reduced excitability enabling more pronounced learn-
ing processes compared with normal (stress-free) conditions. In men and free-cycling 
women, these receptors are not continuously affected by oral contraceptives, thus en-
abling learning and memory processes to function properly.

Furthermore, cortisol weakened fear contextualization and amplified fear generaliza-
tion in women taking oral contraceptives, whereas the opposite pattern was observed in 
men (Van Ast et al., 2012). More precisely, in women taking oral contraceptives, cortisol 
increased fear toward cues signaling danger in both threatening and safe contexts, and 
toward safety signals in a threatening context. Such deficits in fear contextualization 
might be interpreted as a vulnerability factor in the development of anxiety disorders 
and PTSD.

In conclusion, activation of the SNS seems to enhance fear memory formation. 
When cortisol concentrations peak shortly before or during fear acquisition, they seem 
to inhibit the fear circuit surrounding the amygdala and the hippocampus. In contrast, 
fear-related brain activation in women taking oral contraceptives is enhanced by stress or 
cortisol administration. It remains to be tested how exactly gonadal and stress hormones 
interact in different brain areas, and, in particular, how fear memory consolidation is af-
fected.

3.2  Fear extinction and retrieval
Statements on the effects of stress hormones on extinction and retrieval processes can 
only be made cautiously. Nevertheless, interesting preliminary findings have emerged in 
the past few years, pointing to potential influences of gonadal hormones on extinction 
learning, too. In a study investigating only women taking oral contraceptives, administra-
tion of cortisol before fear acquisition enhanced neuronal activation during fear learn-
ing, but reduced activation of the amygdala and the hippocampus during subsequent 
extinction learning (Tabbert et al., 2010). Similarly, cortisol administration directly after 
fear learning, 45 min before the fear extinction session (Merz et al., 2014a,b), reduced 
activation of the amygdala, the medial prefrontal cortex, and the nucleus accumbens in 
men, which was paralleled by an enhanced electrodermal fear response during extinc-
tion. Presumably, cortisol disrupted the interchange between these structures, which may 
have delayed fear extinction learning. Another experiment in healthy humans examined 
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how stress affects the extinction of a conditioned fear memory acquired the day before 
(Bentz et al., 2013). Exposure to stress attenuated fear retrieval (expressed as UCS expec-
tancy) in men but not in women taking oral contraceptives.

Extinction learning is the experimental analogue to exposure therapy; we will now 
focus on clinical studies applying cortisol administration prior to exposure in men and 
women with spider phobia, height phobia, or social phobia (De Quervain et al., 2011; 
Soravia et al., 2006, 2014). Patients receiving cortisol reported less fear after these sessions 
as well as at a later point in time without medication. The explanation for these impor-
tant findings was derived from the literature on episodic memory (see previous section; 
De Quervain and Margraf, 2008): while cortisol attenuated (fear) retrieval when patients 
encountered their feared stimulus, they could better consolidate the corrected informa-
tion (less fear) at the same time. In addition to cortisol, pharmacologically increased 
noradrenergic activity before exposure therapy also reduced fear at a 1-week follow-up 
in male and female acrophobic patients (Powers et al., 2009). Unfortunately, all of these 
clinical studies did not differentiate between women in different phases of the menstrual 
cycle or according to the usage of oral contraceptives. It seems that these findings apply 
to both men and women; however, opposing or null effects in a distinct phase of the 
menstrual cycle or under the usage of contraceptives cannot be excluded.

A study extended these findings in female spider phobics taking oral contracep-
tives (Lass-Hennemann and Michael, 2014). The authors utilized the circadian cortisol 
rhythm, with high levels in the morning and low levels in the afternoon, when conduct-
ing the exposure session. Indeed, phobic fear was more reduced in the group in which 
the exposure session took place under high compared with low endogenous cortisol 
concentrations. The therapist thus might benefit from conducting exposure sessions in 
the morning (and not in the afternoon) in order to make them more effective.

A minor drawback of these studies is that the effects of stress or cortisol administra-
tion influence the retrieval of fear during the first encounter with the feared stimulus 
and also enhance consolidation at the same time; a clear distinction between these dif-
ferent memory phases cannot be made. This issue was addressed in the first study with 
humans to test the impact of stress on the consolidation of extinction in a renewal de-
sign, with fear learning toward discrete cues in context A, extinction in context B, and 
retrieval in both contexts realized on 3 consecutive days respectively (Hamacher-Dang 
et al., 2015). Stress was applied after the extinction session. In the retrieval test phase, 
the authors observed increased conditioned responses in the stress group in the acquisi-
tion, but not in the extinction context, leading to the assumption that exposure to stress 
augmented the integration of contextual cues into long-term memory. With the same 
design, the effects of stress on fear retrieval were tested using a slightly different timing 
(Merz et al., 2014a). Changing the timing of stress from postextinction to preretrieval 
led to a change in the results: stress attenuated fear retrieval in the acquisition context 
and also generally lowered skin conductance responses in the extinction context, in line 
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with the aforementioned reports from clinical samples undergoing exposure sessions (De 
Quervain et al., 2011; Lass-Hennemann and Michael, 2014; Soravia et al., 2006, 2014). 
However, male participants only were tested in both studies, therefore conclusions re-
garding sex differences or the impact of oral contraceptives cannot be drawn.

As the study of stress effects on fear conditioning is still in its early stages, modulating 
variables will need to be identified to deepen our understanding of the results obtained 
so far. At least, there exist clinical studies suggesting an anxiolytic effect of cortisol ad-
ministration and of the utilization of the circadian rhythm on phobic fear. One promis-
ing avenue to follow in this context will undoubtedly be the investigation of sex differ-
ences and of circulating gonadal hormones in interaction with stress hormones.

3.3  Interim conclusion on fear conditioning
In summary, preliminary evidence exists for sex differences in fear learning after stress 
or cortisol administration. Neuroimaging studies have revealed that increases in cortisol 
attenuate the fear circuitry in men and free-cycling women, but increase conditioned 
fear in women taking oral contraceptives. Thus, these basic learning mechanisms seem 
to vary substantially in women depending on the individual status of gonadal hormones 
at the time of testing. From a clinical perspective, it would be desirable to investigate 
whether these altered fear-learning processes translate into vulnerability factors for the 
acquisition of an anxiety disorder or PTSD.

Regarding extinction and its application in exposure therapy, high cortisol levels, as 
observed after pharmacological administration or during the circadian rhythm, seem to 
exert beneficial effects: patients report less fear, and this effect transfers to follow-up ses-
sions without medication. Moreover, stress hormones appear to inhibit fear retrieval and 
enhance the consolidation of fear extinction, similar to the impact of stress on episodic 
memory. Both effects are in play when the confrontation of phobic patients with their 
feared stimulus leads to reduced fear. However, the impact of gonadal hormones on fear 
extinction and retrieval processes needs to be addressed in future studies to better under-
stand the underlying mechanisms and whether they work in all patients.

4  GENERAL CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

Stress exerts manifold effects on learning and memory processes, both in the domain 
of episodic memory as well as in the domain of fear conditioning. Cortisol appears to 
reduce retrieval and enhance consolidation in episodic memory, particularly for emo-
tionally arousing information. Similar effects have been reported for fear conditioning, 
which induces emotional arousal as well. In both domains, preliminary evidence suggests 
that the intake of hormonal contraceptives can either weaken the observed effects (such 
as in episodic memory) or even reverse them (such as in fear conditioning). However, 
the influence of sex and gonadal hormones has been largely ignored in this area, even 
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though initial studies have found important interactions between the HPA and the HPG 
axes. These experiments underline the importance of investigating women, and espe-
cially of examining the impact of circulating gonadal hormones on different learning 
and memory processes more closely. Sometimes, opposing effects in different groups of 
women have been observed, which need to be considered when trying to understand 
the basic mechanisms of stress-related clinical disorders as well as daily phenomena such 
as studying for an exam at school or university.

In some of the studies mentioned, it remains unclear whether the observed memory 
effects are due to differing cortisol responses in men and women or due to an altered 
central GC sensitivity. In the future, this issue clearly needs to be addressed. Furthermore, 
future studies examining the impact of stress hormones on episodic memory and con-
ditioning processes should try to focus more on the investigation of women in different 
stages of the menstrual cycle and of women taking hormonal contraceptives. Crucially, 
free-cycling women should be tested several times to prove that both episodic memory 
consolidation and retrieval after stress or cortisol application change during different 
stages of the menstrual cycle. Accordingly, within-subject designs are highly desirable 
to explore women in their stress-related memory performance when they do not take 
oral contraceptives, and at a later point in time, when they have begun to take them 
(and later still, when they no longer take them). These suggested study designs are work-
intense but undoubtedly important for a deeper insight into the modulation of episodic 
memory and fear conditioning processes by stress and gonadal hormones.

Fear conditioning processes in particular should be further explored to better un-
derstand critical factors facilitating extinction learning, such as fluctuating gonadal hor-
mone concentrations over the course of the menstrual cycle. Future studies might derive 
neurobiological explanations for the different prevalence in men and women to ac-
quire stress-associated disorders such as PTSD. These basic insights into fear learning and 
memory processes are also important for the amelioration of exposure therapy in the 
context of individualized treatment of patients with anxiety disorders or PTSD.
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